Intelligent Diagnosis of Dual-Channel Parallel Rolling Bearings Based on Feature Fusion

残余物 冗余(工程) 计算机科学 卷积神经网络 方位(导航) 特征提取 人工智能 变压器 模式识别(心理学) 工程类 算法 电压 操作系统 电气工程
作者
Haike Guo,Xiaoqiang Zhao
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 10640-10655
标识
DOI:10.1109/jsen.2024.3362402
摘要

In practical engineering, due to the complex and variable working conditions of rolling bearings and the highly nonlinear characteristics of fault signals, especially in the cases of limited fault samples, it is very difficult to achieve satisfactory diagnostic results with the traditional rolling bearing fault diagnosis method. Therefore, in this paper, a two-way parallel rolling bearing intelligent diagnosis method based on multi-scale center cascaded adaptive dynamic convolutional residual network (MCADCRN) and Swin transformer (SwinT) is proposed. Firstly, the original signals are transformed into the two-dimensional time-frequency map by using continuous wavelet transform to preserve the time-frequency characteristics of the original signals. Secondly, a multi-scale center-cascaded dynamic convolutional residual block (MCDCRB) and a multi-dimensional coordinate attention mechanism (MDCAM) are designed to extract the fault features. Through multi-scale convolutional operations, MCDCRB can capture the feature information in different frequency ranges and use a cascade structure to progressively extract higher-level features. At the same time, MDCAM dynamically selects and fuses the features of different scales to reduce the information redundancy and capture the key features; next, the MCADCRN network is constructed by multiple MCDCRBs and a MDCAM to capture the local features; then, the global features of the fault information are captured by using the mechanism of the moving window self-attention in the Swin transformer network; Finally, the local features are fused with the global features and the recognition results are output. The experimental validation is carried out with two different bearing datasets, and the average diagnostic accuracy of the proposed method under variable operating conditions is 99.64%, which is 1.97, 1.53, 1.71, 1.16, and 2.84 percentage points higher than that of the five advanced methods, respectively. Under limited sample conditions, especially when there are only 50 samples, the diagnostic accuracies of the proposed method are 96.42% and 90.89%, respectively. The results verifies the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WWXWWX应助冷酷头箍采纳,获得10
刚刚
JJ发布了新的文献求助10
1秒前
JJ发布了新的文献求助10
1秒前
忘忧发布了新的文献求助10
1秒前
NAMU发布了新的文献求助10
1秒前
wanli445完成签到,获得积分10
2秒前
tang完成签到,获得积分10
2秒前
榆木桢楠发布了新的文献求助10
2秒前
2秒前
Lucas应助ziyuexu采纳,获得10
2秒前
JJ发布了新的文献求助10
2秒前
JJ发布了新的文献求助10
2秒前
fossil完成签到,获得积分10
3秒前
Xavier关注了科研通微信公众号
4秒前
科研通AI2S应助史道夫采纳,获得10
4秒前
Otas完成签到,获得积分10
4秒前
impgod完成签到,获得积分10
4秒前
5秒前
MUAL完成签到,获得积分10
5秒前
标致的数据线完成签到 ,获得积分10
5秒前
安静夏兰应助luluyang采纳,获得50
5秒前
NexusExplorer应助舒适的晓旋采纳,获得10
6秒前
Green完成签到,获得积分10
6秒前
愉快彩虹完成签到,获得积分10
6秒前
脑洞疼应助葳蕤苍生采纳,获得10
7秒前
酷波er应助Mr杨采纳,获得10
7秒前
7秒前
怡然雁凡完成签到,获得积分10
8秒前
star完成签到,获得积分10
8秒前
9秒前
共享精神应助勤恳的白玉采纳,获得10
9秒前
Yaon-Xu完成签到,获得积分10
9秒前
自觉的小海豚完成签到,获得积分10
9秒前
10秒前
Razor完成签到,获得积分10
10秒前
10秒前
伯尔尼圆白菜完成签到,获得积分10
10秒前
Sabrina完成签到,获得积分10
11秒前
Jasper应助脚啊啊啊采纳,获得10
11秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147491
求助须知:如何正确求助?哪些是违规求助? 2798710
关于积分的说明 7830633
捐赠科研通 2455455
什么是DOI,文献DOI怎么找? 1306817
科研通“疑难数据库(出版商)”最低求助积分说明 627917
版权声明 601587