Intelligent Diagnosis of Dual-Channel Parallel Rolling Bearings Based on Feature Fusion

残余物 冗余(工程) 计算机科学 卷积神经网络 方位(导航) 特征提取 人工智能 变压器 模式识别(心理学) 工程类 算法 电压 操作系统 电气工程
作者
Haike Guo,Xiaoqiang Zhao
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (7): 10640-10655 被引量:3
标识
DOI:10.1109/jsen.2024.3362402
摘要

In practical engineering, due to the complex and variable working conditions of rolling bearings and the highly nonlinear characteristics of fault signals, especially in the cases of limited fault samples, it is very difficult to achieve satisfactory diagnostic results with the traditional rolling bearing fault diagnosis method. Therefore, in this paper, a two-way parallel rolling bearing intelligent diagnosis method based on multi-scale center cascaded adaptive dynamic convolutional residual network (MCADCRN) and Swin transformer (SwinT) is proposed. Firstly, the original signals are transformed into the two-dimensional time-frequency map by using continuous wavelet transform to preserve the time-frequency characteristics of the original signals. Secondly, a multi-scale center-cascaded dynamic convolutional residual block (MCDCRB) and a multi-dimensional coordinate attention mechanism (MDCAM) are designed to extract the fault features. Through multi-scale convolutional operations, MCDCRB can capture the feature information in different frequency ranges and use a cascade structure to progressively extract higher-level features. At the same time, MDCAM dynamically selects and fuses the features of different scales to reduce the information redundancy and capture the key features; next, the MCADCRN network is constructed by multiple MCDCRBs and a MDCAM to capture the local features; then, the global features of the fault information are captured by using the mechanism of the moving window self-attention in the Swin transformer network; Finally, the local features are fused with the global features and the recognition results are output. The experimental validation is carried out with two different bearing datasets, and the average diagnostic accuracy of the proposed method under variable operating conditions is 99.64%, which is 1.97, 1.53, 1.71, 1.16, and 2.84 percentage points higher than that of the five advanced methods, respectively. Under limited sample conditions, especially when there are only 50 samples, the diagnostic accuracies of the proposed method are 96.42% and 90.89%, respectively. The results verifies the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
为啥子我不是学霸完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
草原狼发布了新的文献求助10
5秒前
二艺发布了新的文献求助20
5秒前
5秒前
糖果色完成签到,获得积分10
6秒前
夏天呀完成签到,获得积分10
7秒前
8秒前
魔真人发布了新的文献求助30
8秒前
Sandm完成签到,获得积分10
8秒前
Harry发布了新的文献求助10
9秒前
啊啊发布了新的文献求助10
11秒前
余小琴完成签到 ,获得积分10
11秒前
Solar energy发布了新的文献求助10
11秒前
12秒前
叶子完成签到,获得积分10
16秒前
大模型应助好远加身采纳,获得10
17秒前
18秒前
万能图书馆应助吱吱采纳,获得10
19秒前
liyanping完成签到,获得积分20
19秒前
Harry完成签到,获得积分10
19秒前
Cq完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
eric888应助ziming313采纳,获得200
23秒前
搜集达人应助cc采纳,获得10
24秒前
傅寻菱发布了新的文献求助10
24秒前
Lucas应助Cq采纳,获得10
25秒前
liyanping发布了新的文献求助10
25秒前
李文霄完成签到 ,获得积分10
26秒前
刘无敌发布了新的文献求助10
26秒前
都好都好好的完成签到,获得积分20
26秒前
汉堡包应助我大哥爱吃采纳,获得10
26秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975693
求助须知:如何正确求助?哪些是违规求助? 3520019
关于积分的说明 11200635
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798255
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390