Intelligent Diagnosis of Dual-Channel Parallel Rolling Bearings Based on Feature Fusion

残余物 冗余(工程) 计算机科学 卷积神经网络 方位(导航) 特征提取 人工智能 变压器 模式识别(心理学) 工程类 算法 电压 操作系统 电气工程
作者
Haike Guo,Xiaoqiang Zhao
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 10640-10655 被引量:3
标识
DOI:10.1109/jsen.2024.3362402
摘要

In practical engineering, due to the complex and variable working conditions of rolling bearings and the highly nonlinear characteristics of fault signals, especially in the cases of limited fault samples, it is very difficult to achieve satisfactory diagnostic results with the traditional rolling bearing fault diagnosis method. Therefore, in this paper, a two-way parallel rolling bearing intelligent diagnosis method based on multi-scale center cascaded adaptive dynamic convolutional residual network (MCADCRN) and Swin transformer (SwinT) is proposed. Firstly, the original signals are transformed into the two-dimensional time-frequency map by using continuous wavelet transform to preserve the time-frequency characteristics of the original signals. Secondly, a multi-scale center-cascaded dynamic convolutional residual block (MCDCRB) and a multi-dimensional coordinate attention mechanism (MDCAM) are designed to extract the fault features. Through multi-scale convolutional operations, MCDCRB can capture the feature information in different frequency ranges and use a cascade structure to progressively extract higher-level features. At the same time, MDCAM dynamically selects and fuses the features of different scales to reduce the information redundancy and capture the key features; next, the MCADCRN network is constructed by multiple MCDCRBs and a MDCAM to capture the local features; then, the global features of the fault information are captured by using the mechanism of the moving window self-attention in the Swin transformer network; Finally, the local features are fused with the global features and the recognition results are output. The experimental validation is carried out with two different bearing datasets, and the average diagnostic accuracy of the proposed method under variable operating conditions is 99.64%, which is 1.97, 1.53, 1.71, 1.16, and 2.84 percentage points higher than that of the five advanced methods, respectively. Under limited sample conditions, especially when there are only 50 samples, the diagnostic accuracies of the proposed method are 96.42% and 90.89%, respectively. The results verifies the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
seal发布了新的文献求助10
刚刚
NexusExplorer应助梅涅耶采纳,获得10
1秒前
105度余温完成签到,获得积分10
1秒前
要减肥的胖子应助lax采纳,获得10
1秒前
热心市民余先生完成签到,获得积分10
1秒前
1秒前
wjj119发布了新的文献求助10
2秒前
2秒前
2秒前
迅速向日葵完成签到 ,获得积分10
2秒前
刻苦的丹妗完成签到,获得积分10
2秒前
zhaolu发布了新的文献求助10
3秒前
3秒前
掸棉花发布了新的文献求助10
3秒前
yaowei完成签到,获得积分10
3秒前
3秒前
正直的冰香完成签到,获得积分10
4秒前
4秒前
4秒前
自然冷亦发布了新的文献求助10
4秒前
传奇3应助火星上迎梅采纳,获得10
4秒前
张女士发布了新的文献求助20
5秒前
5秒前
axt发布了新的文献求助30
5秒前
5秒前
5秒前
迷人书蝶完成签到,获得积分10
6秒前
腼腆的缘分完成签到,获得积分10
6秒前
6秒前
四月完成签到,获得积分10
6秒前
刘老哥6完成签到,获得积分10
6秒前
Leisure_Lee发布了新的文献求助10
6秒前
wwss完成签到,获得积分10
7秒前
充电中321完成签到,获得积分10
7秒前
7秒前
星辰大海应助seal采纳,获得10
8秒前
jjy完成签到 ,获得积分20
8秒前
Owen应助jin采纳,获得10
8秒前
丫鸡彦祖完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665478
求助须知:如何正确求助?哪些是违规求助? 4876942
关于积分的说明 15114156
捐赠科研通 4824747
什么是DOI,文献DOI怎么找? 2582871
邀请新用户注册赠送积分活动 1536832
关于科研通互助平台的介绍 1495350