Causal relationship between diabetes and depression: A bidirectional Mendelian randomization study

孟德尔随机化 萧条(经济学) 单核苷酸多态性 糖尿病 优势比 置信区间 全基因组关联研究 肿瘤科 医学 内科学 遗传学 生物 内分泌学 基因 遗传变异 经济 宏观经济学 基因型
作者
Zhe Wang,Zhiqiang Du,Rongrong Lu,Qin Zhou,Ying Jiang,Haohao Zhu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:351: 956-961 被引量:5
标识
DOI:10.1016/j.jad.2024.02.031
摘要

This study explores the causal relationship between diabetes and depression using a two-sample Mendelian Randomization (TSMR) method. The study selected single nucleotide polymorphisms (SNPs) closely associated with diabetes and depression in European populations from the Genome-Wide Association Study (GWAS) database, to serve as instrumental variables (IVs). The main evaluation method was inverse variance weighted analysis (IVW), supplemented by verification using Weighted median, Weighted mode, and MR Egger methods. The Odds Ratio (OR) and 95 % Confidence Interval (CI) were used as the main evaluation indicators, along with sensitivity analysis. This study found a negative correlation between diabetes and depression, suggesting that diabetes may reduce the risk of depression [IVW(FE): OR: 0.901, 95 % CI: 0.823 to 0.987; P = 0.025 < 0.05]. This finding was further confirmed by the Weighted median [OR: 0.844, 95 % CI: 0.730 to 0.974; P = 0.021 < 0.05] and Weighted mode method [OR: 0.766, 95 % CI: 0.637 to 0.921; P = 0.006 < 0.05]. However, the reverse showed no causal relationship between depression and diabetes (P > 0.05). Sensitivity analysis found no pleiotropy, and there were no large influences from individual SNPs on the result's robustness; the results are stable and reliable. For the first time, this study using TSMR analysis found a negative correlation between diabetes and the risk of depression onset in European populations, suggesting that diabetes might reduce the risk of depression. But as the mechanisms are still unclear, these findings warrant further study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助张真肇采纳,获得10
1秒前
浮游应助木子西采纳,获得10
3秒前
zbz12138发布了新的文献求助10
4秒前
勤恳易谙完成签到,获得积分10
4秒前
6秒前
7秒前
chunfengfusu发布了新的文献求助10
7秒前
SciGPT应助科研通管家采纳,获得10
9秒前
xxfsx应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
xxfsx应助科研通管家采纳,获得10
10秒前
嘿嘿应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
xxfsx应助科研通管家采纳,获得10
10秒前
嘿嘿应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
嘿嘿应助科研通管家采纳,获得10
10秒前
10秒前
xxfsx应助科研通管家采纳,获得10
10秒前
Stella应助科研通管家采纳,获得30
10秒前
聪明铸海完成签到,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
老阎应助科研通管家采纳,获得30
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得30
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
12秒前
一一完成签到,获得积分10
12秒前
小荔枝完成签到,获得积分10
12秒前
闪闪盼芙完成签到,获得积分20
12秒前
李爱国应助学术小白采纳,获得20
13秒前
烟花应助zbz12138采纳,获得10
17秒前
MCRong应助都美秋采纳,获得20
18秒前
18秒前
luo完成签到 ,获得积分10
19秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379826
求助须知:如何正确求助?哪些是违规求助? 4504037
关于积分的说明 14017191
捐赠科研通 4412828
什么是DOI,文献DOI怎么找? 2423948
邀请新用户注册赠送积分活动 1416842
关于科研通互助平台的介绍 1394454