Forecasting Peak Hours for Energy Consumption in Regional Power Systems

消费(社会学) 能源消耗 功率消耗 能量(信号处理) 功率(物理) 环境科学 经济 环境经济学 电气工程 工程类 物理 统计 数学 社会学 热力学 社会科学
作者
S. R. Saitov,Н. Д. Чичирова,A. A. Filimonovа,N. B. Karnitsky
出处
期刊:Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika [Belarusian National Technical University]
卷期号:67 (1): 78-91 被引量:1
标识
DOI:10.21122/1029-7448-2024-67-1-78-91
摘要

. Electrical power is the second most important commodity in electrical energy markets. For consumers, the charged amount of “generator” power is determined as the average value of hourly consumption amounts on working days during peak hours in the region. The cost of power in some regions can reach 40 % of the final tariff, so reducing the load during peak hours by 10 % can lead to a decrease in monthly consumer payments by 3 %. However, such a way of saving money is not available to the consumer since the commercial operator of the wholesale market of electricity and capacity publishes the peak hours of the regions after the 10 th day of the next month, when this information is no longer relevant. Timely forecasting of peak hours will make it possible, on the one hand, to reduce consumer costs for payments for electric power, and on the other hand, to smooth out the daily schedule of electric load of the power system, thereby optimizing the operation of generating equipment of stations and networks of the system operator. The article presents a study of the effectiveness of machine learning methods in the context of forecasting the peak hour of a regional power system. The study concerns the period from November 2011 to October 2023, covers 76 regions of the Russian Federation, including subjects of price (1 st and 2 nd ) and non-price zones and includes 10 machine-learning methods. The results of the study showed that statistically, the K-nearest neighbors clustering method turns out to be the most accurate, although not universal. Support Vector Classifier and Decision Tree Classifier have demonstrated high efficiency (in terms of accuracy and speed). The study also refuted the assumption that the closest data in terms of time series has the greatest value in predicting peak hours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小小怪采纳,获得10
1秒前
拂晓发布了新的文献求助10
1秒前
wyk完成签到,获得积分10
2秒前
2秒前
4秒前
wyk发布了新的文献求助10
4秒前
dddd发布了新的文献求助10
6秒前
8秒前
crash发布了新的文献求助10
8秒前
YY1023发布了新的文献求助10
9秒前
科研通AI5应助Suki采纳,获得10
9秒前
10秒前
11秒前
jewellery完成签到 ,获得积分10
11秒前
满怀完成签到,获得积分10
12秒前
13秒前
Wink14551发布了新的文献求助10
13秒前
AteeqBaloch完成签到,获得积分10
13秒前
OOK发布了新的文献求助10
15秒前
15秒前
机灵柚子举报likk求助涉嫌违规
16秒前
kokoko完成签到,获得积分10
18秒前
19秒前
桐桐应助朴素太阳采纳,获得10
19秒前
24秒前
认真摆烂发布了新的文献求助10
25秒前
远方发布了新的文献求助30
25秒前
小鲨鱼应助晚上研究死采纳,获得10
26秒前
科研通AI5应助Suki采纳,获得10
26秒前
zino发布了新的文献求助10
27秒前
27秒前
斯文败类应助蛋挞采纳,获得30
28秒前
科研通AI5应助独特的归尘采纳,获得10
29秒前
30秒前
32秒前
QQQ发布了新的文献求助30
34秒前
34秒前
展锋发布了新的文献求助10
35秒前
35秒前
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674041
求助须知:如何正确求助?哪些是违规求助? 3229463
关于积分的说明 9785742
捐赠科研通 2939976
什么是DOI,文献DOI怎么找? 1611554
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344