An atlas of cell-type-specific interactome networks across 44 human tumor types

相互作用体 电池类型 计算生物学 基因调控网络 生物 基因 系统生物学 细胞 生物网络 生物信息学 基因表达 遗传学
作者
Zekun Li,Gerui Liu,Xiaoxiao Yang,Shu Meng,Junping Wen,Tiehong Yang,Xiaochuan Liu,Yuting Wang,Jiapei Yuan,Yang Yang
出处
期刊:Genome Medicine [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1186/s13073-024-01303-w
摘要

Biological processes are controlled by groups of genes acting in concert. Investigating gene-gene interactions within different cell types can help researchers understand the regulatory mechanisms behind human complex diseases, such as tumors.We collected extensive single-cell RNA-seq data from tumors, involving 563 patients with 44 different tumor types. Through our analysis, we identified various cell types in tumors and created an atlas of different immune cell subsets across different tumor types. Using the SCINET method, we reconstructed interactome networks specific to different cell types. Diverse functional data was then integrated to gain biological insights into the networks, including somatic mutation patterns and gene functional annotation. Additionally, genes with prognostic relevance within the networks were also identified. We also examined cell-cell communications to investigate how gene interactions modulate cell-cell interactions.We developed a data portal called CellNetdb for researchers to study cell-type-specific interactome networks. Our findings indicate that these networks can be used to identify genes with topological specificity in different cell types. We also found that prognostic genes can deconvolved into cell types through analyzing network connectivity. Additionally, we identified commonalities and differences in cell-type-specific networks across different tumor types. Our results suggest that these networks can be used to prioritize risk genes.This study presented CellNetdb, a comprehensive repository featuring an atlas of cell-type-specific interactome networks across 44 human tumor types. The findings underscore the utility of these networks in delineating the intricacies of tumor microenvironments and advancing the understanding of molecular mechanisms underpinning human tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fff发布了新的文献求助10
刚刚
mc完成签到,获得积分10
刚刚
七月发布了新的文献求助10
刚刚
懿懿发布了新的文献求助10
1秒前
Atalent发布了新的文献求助10
1秒前
1秒前
白芷完成签到,获得积分10
1秒前
高大山彤完成签到,获得积分10
2秒前
合适醉蝶完成签到 ,获得积分10
2秒前
2秒前
王云霞完成签到,获得积分10
3秒前
xycc完成签到,获得积分10
3秒前
3秒前
Duang发布了新的文献求助10
3秒前
开心的西瓜完成签到,获得积分10
5秒前
6秒前
北冥鱼发布了新的文献求助10
6秒前
白板完成签到,获得积分20
7秒前
9秒前
9秒前
Lucas应助Champion采纳,获得10
9秒前
有个女孩叫阿娇完成签到,获得积分10
9秒前
丰富以亦发布了新的文献求助10
10秒前
李爱国应助zzzz采纳,获得10
10秒前
xinxin0902应助研狗采纳,获得20
10秒前
10秒前
古人说发布了新的文献求助20
10秒前
yaya发布了新的文献求助10
11秒前
11秒前
Akim应助Atalent采纳,获得10
11秒前
英姑应助千衷采纳,获得10
11秒前
ppat5012完成签到,获得积分10
11秒前
美味肉蟹煲完成签到,获得积分10
12秒前
歪比巴卜发布了新的文献求助10
12秒前
12秒前
12秒前
DEF完成签到 ,获得积分10
12秒前
zero完成签到,获得积分10
12秒前
传奇3应助池林采纳,获得10
12秒前
钟馗完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887