An atlas of cell-type-specific interactome networks across 44 human tumor types

相互作用体 电池类型 计算生物学 基因调控网络 生物 基因 系统生物学 细胞 生物网络 生物信息学 基因表达 遗传学
作者
Zekun Li,Gerui Liu,Xiaoxiao Yang,Shu Meng,Junping Wen,Tiehong Yang,Xiaochuan Liu,Yuting Wang,Jiapei Yuan,Yang Yang
出处
期刊:Genome Medicine [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1186/s13073-024-01303-w
摘要

Biological processes are controlled by groups of genes acting in concert. Investigating gene-gene interactions within different cell types can help researchers understand the regulatory mechanisms behind human complex diseases, such as tumors.We collected extensive single-cell RNA-seq data from tumors, involving 563 patients with 44 different tumor types. Through our analysis, we identified various cell types in tumors and created an atlas of different immune cell subsets across different tumor types. Using the SCINET method, we reconstructed interactome networks specific to different cell types. Diverse functional data was then integrated to gain biological insights into the networks, including somatic mutation patterns and gene functional annotation. Additionally, genes with prognostic relevance within the networks were also identified. We also examined cell-cell communications to investigate how gene interactions modulate cell-cell interactions.We developed a data portal called CellNetdb for researchers to study cell-type-specific interactome networks. Our findings indicate that these networks can be used to identify genes with topological specificity in different cell types. We also found that prognostic genes can deconvolved into cell types through analyzing network connectivity. Additionally, we identified commonalities and differences in cell-type-specific networks across different tumor types. Our results suggest that these networks can be used to prioritize risk genes.This study presented CellNetdb, a comprehensive repository featuring an atlas of cell-type-specific interactome networks across 44 human tumor types. The findings underscore the utility of these networks in delineating the intricacies of tumor microenvironments and advancing the understanding of molecular mechanisms underpinning human tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
T拐拐发布了新的文献求助10
刚刚
1秒前
小米发布了新的文献求助10
1秒前
2秒前
2秒前
yyy发布了新的文献求助10
4秒前
sandwich完成签到 ,获得积分10
4秒前
4秒前
jwj完成签到,获得积分10
5秒前
和谐煜祺发布了新的文献求助10
6秒前
6秒前
bkagyin应助xiuT采纳,获得10
7秒前
Orange应助哈哈哈采纳,获得30
9秒前
9秒前
Felix完成签到,获得积分10
9秒前
8R60d8完成签到,获得积分0
9秒前
lili完成签到,获得积分10
10秒前
11秒前
12秒前
阳光发布了新的文献求助10
12秒前
反复发作发布了新的文献求助10
14秒前
14秒前
苗条发箍完成签到 ,获得积分10
14秒前
打打应助Irene采纳,获得10
15秒前
Momomo应助川彐采纳,获得10
15秒前
芒琪发布了新的文献求助10
15秒前
上官若男应助听风者采纳,获得10
16秒前
黑黑黑完成签到,获得积分10
16秒前
sypbrooks完成签到,获得积分10
16秒前
刻苦的菀完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
沧海一粟完成签到,获得积分10
19秒前
M3L2完成签到,获得积分10
20秒前
酷波er应助小米采纳,获得10
20秒前
21秒前
田様应助Zero采纳,获得10
23秒前
我是老大应助yeandpeng采纳,获得10
24秒前
姜玲完成签到,获得积分10
24秒前
叶雪怡完成签到 ,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365