An atlas of cell-type-specific interactome networks across 44 human tumor types

相互作用体 电池类型 计算生物学 基因调控网络 生物 基因 系统生物学 细胞 生物网络 生物信息学 基因表达 遗传学
作者
Zekun Li,Gerui Liu,Xiaoxiao Yang,Shu Meng,Junping Wen,Tiehong Yang,Xiaochuan Liu,Yuting Wang,Jiapei Yuan,Yang Yang
出处
期刊:Genome Medicine [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1186/s13073-024-01303-w
摘要

Biological processes are controlled by groups of genes acting in concert. Investigating gene-gene interactions within different cell types can help researchers understand the regulatory mechanisms behind human complex diseases, such as tumors.We collected extensive single-cell RNA-seq data from tumors, involving 563 patients with 44 different tumor types. Through our analysis, we identified various cell types in tumors and created an atlas of different immune cell subsets across different tumor types. Using the SCINET method, we reconstructed interactome networks specific to different cell types. Diverse functional data was then integrated to gain biological insights into the networks, including somatic mutation patterns and gene functional annotation. Additionally, genes with prognostic relevance within the networks were also identified. We also examined cell-cell communications to investigate how gene interactions modulate cell-cell interactions.We developed a data portal called CellNetdb for researchers to study cell-type-specific interactome networks. Our findings indicate that these networks can be used to identify genes with topological specificity in different cell types. We also found that prognostic genes can deconvolved into cell types through analyzing network connectivity. Additionally, we identified commonalities and differences in cell-type-specific networks across different tumor types. Our results suggest that these networks can be used to prioritize risk genes.This study presented CellNetdb, a comprehensive repository featuring an atlas of cell-type-specific interactome networks across 44 human tumor types. The findings underscore the utility of these networks in delineating the intricacies of tumor microenvironments and advancing the understanding of molecular mechanisms underpinning human tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助澜生采纳,获得10
刚刚
lin完成签到,获得积分10
1秒前
Ares发布了新的文献求助10
1秒前
1秒前
谭平完成签到 ,获得积分10
1秒前
2秒前
淡定紫菱完成签到,获得积分10
2秒前
所所应助HYH采纳,获得20
2秒前
2秒前
木香完成签到,获得积分10
3秒前
尘雾发布了新的文献求助10
4秒前
5秒前
高鑫完成签到 ,获得积分10
5秒前
英姑应助dd采纳,获得10
5秒前
Chan0501关注了科研通微信公众号
6秒前
6秒前
研友_LMNjkn发布了新的文献求助10
6秒前
tjunqi完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助下课了吧采纳,获得10
8秒前
8秒前
8秒前
好的完成签到,获得积分20
9秒前
蜂蜜不是糖完成签到 ,获得积分10
9秒前
狮子最爱吃芒果完成签到,获得积分10
9秒前
10秒前
11秒前
尘雾完成签到,获得积分10
11秒前
澜生发布了新的文献求助10
12秒前
leekle完成签到,获得积分10
13秒前
shengChen发布了新的文献求助10
13秒前
自信鞯发布了新的文献求助10
14秒前
江北小赵完成签到,获得积分10
14秒前
14秒前
14秒前
clock完成签到 ,获得积分10
14秒前
虫二先生完成签到 ,获得积分10
14秒前
甜甜的难敌完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794