亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Prediction of Survival for Extremely Premature Infants Born at 23 to 29 Weeks Gestational Age in the Neonatal Intensive Care Unit: Development and Evaluation of Machine Learning Models

新生儿重症监护室 医学 胎龄 重症监护 儿科 重症监护室 妊娠期 病历 产科 怀孕 重症监护医学 内科学 遗传学 生物
作者
Angie Li,Sarah Mullin,Peter L. Elkin
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:12: e42271-e42271 被引量:2
标识
DOI:10.2196/42271
摘要

Background Infants born at extremely preterm gestational ages are typically admitted to the neonatal intensive care unit (NICU) after initial resuscitation. The subsequent hospital course can be highly variable, and despite counseling aided by available risk calculators, there are significant challenges with shared decision-making regarding life support and transition to end-of-life care. Improving predictive models can help providers and families navigate these unique challenges. Objective Machine learning methods have previously demonstrated added predictive value for determining intensive care unit outcomes, and their use allows consideration of a greater number of factors that potentially influence newborn outcomes, such as maternal characteristics. Machine learning–based models were analyzed for their ability to predict the survival of extremely preterm neonates at initial admission. Methods Maternal and newborn information was extracted from the health records of infants born between 23 and 29 weeks of gestation in the Medical Information Mart for Intensive Care III (MIMIC-III) critical care database. Applicable machine learning models predicting survival during the initial NICU admission were developed and compared. The same type of model was also examined using only features that would be available prepartum for the purpose of survival prediction prior to an anticipated preterm birth. Features most correlated with the predicted outcome were determined when possible for each model. Results Of included patients, 37 of 459 (8.1%) expired. The resulting random forest model showed higher predictive performance than the frequently used Score for Neonatal Acute Physiology With Perinatal Extension II (SNAPPE-II) NICU model when considering extremely preterm infants of very low birth weight. Several other machine learning models were found to have good performance but did not show a statistically significant difference from previously available models in this study. Feature importance varied by model, and those of greater importance included gestational age; birth weight; initial oxygenation level; elements of the APGAR (appearance, pulse, grimace, activity, and respiration) score; and amount of blood pressure support. Important prepartum features also included maternal age, steroid administration, and the presence of pregnancy complications. Conclusions Machine learning methods have the potential to provide robust prediction of survival in the context of extremely preterm births and allow for consideration of additional factors such as maternal clinical and socioeconomic information. Evaluation of larger, more diverse data sets may provide additional clarity on comparative performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juziyaya应助白佐帅采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
4秒前
8秒前
ddfighting发布了新的文献求助10
11秒前
科研小刘发布了新的文献求助10
13秒前
璟焱完成签到 ,获得积分10
15秒前
31秒前
34秒前
YYYY完成签到 ,获得积分10
37秒前
叮咚雨发布了新的文献求助10
38秒前
sora98完成签到 ,获得积分10
44秒前
豆包完成签到 ,获得积分10
58秒前
Kry4taloL发布了新的文献求助10
1分钟前
HOW完成签到 ,获得积分10
1分钟前
Hello完成签到,获得积分10
1分钟前
JamesPei应助科研通管家采纳,获得20
2分钟前
caca完成签到,获得积分10
2分钟前
斯文败类应助弯碧琼采纳,获得10
2分钟前
orixero应助bixiao采纳,获得30
2分钟前
3分钟前
山止川行完成签到 ,获得积分10
3分钟前
yier发布了新的文献求助10
3分钟前
yier完成签到,获得积分20
3分钟前
灵感大王喵完成签到 ,获得积分10
3分钟前
3分钟前
h0jian09完成签到,获得积分10
4分钟前
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
Kry4taloL发布了新的文献求助100
4分钟前
hayk发布了新的文献求助10
4分钟前
fendy完成签到,获得积分0
4分钟前
4分钟前
薛定谔的猫完成签到,获得积分10
4分钟前
hayk完成签到,获得积分20
4分钟前
4分钟前
么么么发布了新的文献求助10
5分钟前
么么么完成签到 ,获得积分10
5分钟前
科研小刘发布了新的文献求助10
5分钟前
Tethys完成签到 ,获得积分10
5分钟前
垚祎完成签到 ,获得积分10
6分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806917
捐赠科研通 2449815
什么是DOI,文献DOI怎么找? 1303501
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314