Partially View-aligned Representation Learning via Cross-view Graph Contrastive Network

计算机科学 人工智能 图形 理论计算机科学 代表(政治) 政治 政治学 法学
作者
Yiming Wang,Dongxia Chang,Zhiqiang Fu,Jie Wen,Yao Zhao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7272-7283 被引量:3
标识
DOI:10.1109/tcsvt.2024.3376720
摘要

Multi-view representation learning, aimed at uncovering the inherent structure within multi-view data, has developed rapidly in recent years. In practice, due to temporal and spatial desynchronization, it is common that only part of the data is aligned between views, which leads to the Partial View Alignment (PVA) problem. To address the challenge of representation learning on partially view-aligned multi-view data, we propose a new cross-view graph contrastive learning network, which integrates multi-view information to align data and learn latent representations. First, view-specific autoencoders are used to construct an end-to-end multi-view representation learning framework for learning specific view representations. Furthermore, to achieve cluster-level alignment, we introduce a cross-view graph contrastive learning module to guide the learning of discriminative representations. Compared to the existing methods, the proposed cluster-level alignment method successfully extends the view alignment to more than two views. Meanwhile, the results of clustering and classification experiments on several popular multi-view datasets can also illustrate the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
在水一方应助guoguo采纳,获得10
2秒前
麻花精发布了新的文献求助10
3秒前
3秒前
123发布了新的文献求助10
5秒前
jovrtic发布了新的文献求助30
6秒前
幸运幸福发布了新的文献求助10
7秒前
陈祥薇完成签到,获得积分10
7秒前
今后应助stars采纳,获得10
9秒前
赘婿应助不成安火采纳,获得10
9秒前
上班摸鱼完成签到 ,获得积分10
10秒前
11秒前
万能图书馆应助Alisanda采纳,获得30
11秒前
12秒前
有人应助jovrtic采纳,获得30
12秒前
丘比特应助jovrtic采纳,获得10
12秒前
12秒前
小马甲应助jovrtic采纳,获得10
12秒前
无花果应助意忆采纳,获得10
13秒前
xuxiaoxu发布了新的文献求助10
15秒前
15秒前
asd发布了新的文献求助20
15秒前
16秒前
小蘑菇应助麻花精采纳,获得10
16秒前
16秒前
荒1完成签到,获得积分10
18秒前
在水一方应助橙橙橙橙采纳,获得10
18秒前
18秒前
科研小达人完成签到,获得积分10
19秒前
20秒前
zyy发布了新的文献求助10
22秒前
tonyhuang完成签到,获得积分10
23秒前
科研通AI2S应助卓一曲采纳,获得10
23秒前
24秒前
赘婿应助stars采纳,获得10
24秒前
24秒前
24秒前
24秒前
浅尝离白应助ssgecust采纳,获得30
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146066
求助须知:如何正确求助?哪些是违规求助? 2797486
关于积分的说明 7824486
捐赠科研通 2453874
什么是DOI,文献DOI怎么找? 1305891
科研通“疑难数据库(出版商)”最低求助积分说明 627598
版权声明 601491