Inverse physics–informed neural networks for digital twin–based bearing fault diagnosis under imbalanced samples

方位(导航) 人工神经网络 断层(地质) 振动 计算机科学 人工智能 数据挖掘 控制理论(社会学) 地质学 地震学 物理 控制(管理) 量子力学
作者
Yi Qin,Hongyu Liu,Yi Wang,Yongfang Mao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:292: 111641-111641 被引量:97
标识
DOI:10.1016/j.knosys.2024.111641
摘要

In actual engineering, insufficient bearing samples for each fault category presents a substantial obstacle to the intelligent fault diagnosis of rolling bearings. To address sample imbalance, this work explores a novel bearing fault data–generation approach based on digital twin technique. First, an inverse physics–informed neural network (PINN) is built to recognize dynamic model parameters by embedding a bearing dynamic model into a neural network. In this network, a boundary loss is designed to quickly determine the approximate ranges of parameters that can accelerate network convergence, and a true value loss is constructed for the assessment of spectral discrepancy between simulated and actual data. Then, using an inverse PINN, a bearing fault dynamic model, and real vibration data, we propose a digital twin–based fault data–generation method for producing high-quality bearing fault samples under multiple working conditions and fault modes. Finally, the developed approach is applied to generate bearing fault vibration samples under a specific working condition. The samples are used for training the diagnostic network, thus solving the issue of sample imbalance. The comparison results of several experiments suggest that the developed data-generation method effectively improves the precision of cross-working-condition bearing fault diagnosis and surpasses multiple state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
haohoa发布了新的文献求助10
刚刚
1秒前
amo完成签到,获得积分10
1秒前
空凌完成签到,获得积分10
1秒前
1秒前
东晓发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
月岛滴滴完成签到,获得积分10
2秒前
Maestro_S应助科研通管家采纳,获得10
2秒前
柳絮发布了新的文献求助10
2秒前
Maestro_S应助科研通管家采纳,获得10
2秒前
llllxj发布了新的文献求助10
2秒前
嘞是举仔应助科研通管家采纳,获得30
2秒前
量子星尘发布了新的文献求助10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
滴滴哩哩完成签到,获得积分10
2秒前
Maestro_S应助科研通管家采纳,获得10
2秒前
tracywan完成签到,获得积分20
2秒前
Berberin应助科研通管家采纳,获得10
2秒前
ziyue发布了新的文献求助10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
苏菲娅完成签到,获得积分10
3秒前
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
请先说你好完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
linktopast发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699126
求助须知:如何正确求助?哪些是违规求助? 5129127
关于积分的说明 15224490
捐赠科研通 4854057
什么是DOI,文献DOI怎么找? 2604442
邀请新用户注册赠送积分活动 1555961
关于科研通互助平台的介绍 1514252