FaceChain-SuDe: Building Derived Class to Inherit Category Attributes for One-shot Subject-Driven Generation

主题(文档) 弹丸 班级(哲学) 计算机科学 数学 人工智能 万维网 化学 有机化学
作者
Pengchong Qiao,Lei Shang,Chang Liu,Baigui Sun,Xiangyang Ji,Jie Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.06775
摘要

Subject-driven generation has garnered significant interest recently due to its ability to personalize text-to-image generation. Typical works focus on learning the new subject's private attributes. However, an important fact has not been taken seriously that a subject is not an isolated new concept but should be a specialization of a certain category in the pre-trained model. This results in the subject failing to comprehensively inherit the attributes in its category, causing poor attribute-related generations. In this paper, motivated by object-oriented programming, we model the subject as a derived class whose base class is its semantic category. This modeling enables the subject to inherit public attributes from its category while learning its private attributes from the user-provided example. Specifically, we propose a plug-and-play method, Subject-Derived regularization (SuDe). It constructs the base-derived class modeling by constraining the subject-driven generated images to semantically belong to the subject's category. Extensive experiments under three baselines and two backbones on various subjects show that our SuDe enables imaginative attribute-related generations while maintaining subject fidelity. Codes will be open sourced soon at FaceChain (https://github.com/modelscope/facechain).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
娜娜子欧完成签到,获得积分10
1秒前
隐形曼青应助从笙采纳,获得10
2秒前
2秒前
3秒前
田様应助任性的皮卡丘采纳,获得10
3秒前
兴奋的定帮应助jiaobuyimi采纳,获得10
4秒前
lll完成签到,获得积分10
4秒前
sunfenghong完成签到,获得积分10
4秒前
科研小白发布了新的文献求助10
5秒前
5秒前
5秒前
chen完成签到,获得积分10
6秒前
6秒前
别先生完成签到,获得积分10
7秒前
7秒前
wbx发布了新的文献求助10
7秒前
SHAO应助Self采纳,获得10
7秒前
学学习发布了新的文献求助10
8秒前
长情尔曼完成签到,获得积分10
8秒前
8秒前
傲娇的采蓝完成签到,获得积分10
10秒前
111发布了新的文献求助10
10秒前
小蘑菇应助大胆香彤采纳,获得10
10秒前
长情尔曼发布了新的文献求助10
10秒前
11秒前
LSQ完成签到,获得积分10
11秒前
11秒前
ww发布了新的文献求助20
11秒前
郑鹏飞发布了新的文献求助10
12秒前
12秒前
Last炫神丶发布了新的文献求助10
13秒前
儒雅的蜜粉完成签到,获得积分10
13秒前
humorr完成签到,获得积分10
13秒前
zigzag发布了新的文献求助10
13秒前
米mi发布了新的文献求助10
14秒前
14秒前
14秒前
玛卡巴卡发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958357
求助须知:如何正确求助?哪些是违规求助? 3504636
关于积分的说明 11119121
捐赠科研通 3235826
什么是DOI,文献DOI怎么找? 1788534
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802600