FaceChain-SuDe: Building Derived Class to Inherit Category Attributes for One-shot Subject-Driven Generation

主题(文档) 弹丸 班级(哲学) 计算机科学 数学 人工智能 万维网 化学 有机化学
作者
Pengchong Qiao,Lei Shang,Chang Liu,Baigui Sun,Xiangyang Ji,Jie Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.06775
摘要

Subject-driven generation has garnered significant interest recently due to its ability to personalize text-to-image generation. Typical works focus on learning the new subject's private attributes. However, an important fact has not been taken seriously that a subject is not an isolated new concept but should be a specialization of a certain category in the pre-trained model. This results in the subject failing to comprehensively inherit the attributes in its category, causing poor attribute-related generations. In this paper, motivated by object-oriented programming, we model the subject as a derived class whose base class is its semantic category. This modeling enables the subject to inherit public attributes from its category while learning its private attributes from the user-provided example. Specifically, we propose a plug-and-play method, Subject-Derived regularization (SuDe). It constructs the base-derived class modeling by constraining the subject-driven generated images to semantically belong to the subject's category. Extensive experiments under three baselines and two backbones on various subjects show that our SuDe enables imaginative attribute-related generations while maintaining subject fidelity. Codes will be open sourced soon at FaceChain (https://github.com/modelscope/facechain).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助乔巴采纳,获得10
1秒前
1秒前
完美世界应助隐龙居士采纳,获得10
1秒前
土土b发布了新的文献求助10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
浮游应助发几篇ssci采纳,获得10
2秒前
3秒前
负责戎完成签到,获得积分10
3秒前
xue发布了新的文献求助20
3秒前
Lurant完成签到,获得积分10
3秒前
3秒前
cici完成签到,获得积分10
3秒前
4秒前
4秒前
思源应助chenting采纳,获得10
4秒前
Jared应助elang采纳,获得10
5秒前
苏苏完成签到,获得积分10
6秒前
今后应助zhanghang采纳,获得10
6秒前
mosisa完成签到,获得积分10
7秒前
7秒前
7秒前
SciGPT应助661采纳,获得10
8秒前
李健的粉丝团团长应助123采纳,获得30
9秒前
9秒前
星辰大海应助端庄弼采纳,获得10
9秒前
西音完成签到,获得积分10
10秒前
11秒前
子非鱼发布了新的文献求助10
12秒前
12秒前
花莫凋零发布了新的文献求助10
12秒前
13秒前
菜鸟队长完成签到,获得积分10
14秒前
Aurora发布了新的文献求助10
15秒前
背后的小白菜完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569662
求助须知:如何正确求助?哪些是违规求助? 4654638
关于积分的说明 14710375
捐赠科研通 4595950
什么是DOI,文献DOI怎么找? 2522192
邀请新用户注册赠送积分活动 1493397
关于科研通互助平台的介绍 1463987