化学
半导体
卤化物
立体化学
光电子学
无机化学
物理
作者
Ali Azmy,Daria M. Konovalova,Leah Lepore,Alexander Fyffe,Do Yun Kim,Łukasz Wojtas,Qing Tu,M. Tuan Trinh,Nourdine Zibouche,Ioannis Spanopoulos
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2023-11-27
卷期号:62 (49): 20142-20152
被引量:3
标识
DOI:10.1021/acs.inorgchem.3c03098
摘要
Chiral hybrid metal-halide semiconductors (MHS) pose as ideal candidates for spintronic applications owing to their strong spin-orbit coupling (SOC), and long spin relaxation times. Shedding light on the underlying structure-property relationships is of paramount importance for the targeted synthesis of materials with an optimum performance. Herein, we report the synthesis and optical properties of 1D chiral (R-/S-THBTD)SbBr5 (THBTD = 4,5,6,7-tetrahydro-benzothiazole-2,6-diamine) semiconductors using a multifunctional ligand as a countercation and a structure directing agent. (R-/S-THBTD)SbBr5 feature direct and indirect band gap characteristics, exhibiting photoluminescence (PL) light emission at RT that is accompanied by a lifetime of a few ns. Circular dichroism (CD), second harmonic generation (SHG), and piezoresponse force microscopy (PFM) studies validate the chiral nature of the synthesized materials. Density functional theory (DFT) calculations revealed a Rashba/Dresselhaus (R/D) spin splitting, supported by an energy splitting (ER) of 23 and 25 meV, and a Rashba parameter (αR) of 0.23 and 0.32 eV·Å for the R and S analogs, respectively. These values are comparable to those of the 3D and 2D perovskite materials. Notably, (S-THBTD)SbBr5 has been air-stable for a year, a record performance among chiral lead-free MHS. This work demonstrates that low-dimensional, lead-free, chiral semiconductors with exceptional air stability can be acquired, without compromising spin splitting and manipulation performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI