Machine learning approaches to predict compressive strength of fly ash-based geopolymer concrete: A comprehensive review

地聚合物水泥 抗压强度 聚合物 粉煤灰 材料科学 复合材料
作者
Madushan Rathnayaka,Dulakshi Karunasinghe,Chamila Gunasekara,K. K. Wijesundara,Weena Lokuge,David W. Law
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:419: 135519-135519 被引量:20
标识
DOI:10.1016/j.conbuildmat.2024.135519
摘要

Geopolymer concrete is a sustainable replacement to the Ordinary Portland Cement (OPC) concrete as it mitigates some of the associated problems of OPC manufacturing such as greenhouse gas emission and natural resource depletion. There has been significant recent research in the design of fly ash-based geopolymer concrete using advanced machine learning techniques which can address some of the problems with classical mix design approaches. However, practical application of geopolymer concrete is limited due to lack of standard mix design procedure. This comprehensive review summarizes the current literature on machine learning methodologies to predict the compressive strength of fly ash-based geopolymer concrete. Firstly, the input parameters used for the machine learning model development are categorized based on feature selection or feature extraction. Secondly, available machine learning approaches are categorized based on analysis methods namely, nonlinear regression, ensemble learning, and evolutionary programming. The effect of hyperparameters on the individual model performance, and model comparison based on the prediction performance are also discussed to identify potentially more suitable model type and hyper parameter ranges. Further, the paper discusses the input variable's sensitivity towards the model performance which provides guidance towards future model developments. Overall, this paper will provide an understanding of the current state of machine learning approaches to predict the compressive strength of geopolymer concrete and the gaps in research for the development of models and achieving the required performance. Hence, the summarized knowledge will be highly beneficial to design prospective research towards sustainable cement-free concrete using fly ash.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qoq发布了新的文献求助10
2秒前
hezt发布了新的文献求助10
2秒前
幻星岛发布了新的文献求助10
2秒前
3秒前
丘比特应助wang采纳,获得10
4秒前
6秒前
7秒前
7秒前
酷酷可愁完成签到 ,获得积分20
10秒前
匙子完成签到 ,获得积分10
10秒前
yy完成签到 ,获得积分10
10秒前
小田关注了科研通微信公众号
10秒前
10秒前
黎小静发布了新的文献求助10
11秒前
12秒前
zqqq完成签到,获得积分20
13秒前
RACHEL完成签到 ,获得积分10
14秒前
外向白开水完成签到 ,获得积分10
14秒前
温心发布了新的文献求助10
15秒前
15秒前
Lucas应助个性毛衣采纳,获得30
16秒前
18秒前
RACHEL关注了科研通微信公众号
18秒前
18秒前
20秒前
yl发布了新的文献求助10
20秒前
Lydia完成签到,获得积分10
21秒前
热血马儿完成签到,获得积分10
25秒前
顾海东完成签到,获得积分10
25秒前
青春发布了新的文献求助10
26秒前
拼搏听寒发布了新的文献求助10
27秒前
kyf完成签到,获得积分10
28秒前
28秒前
qoq完成签到,获得积分10
28秒前
一夜很静完成签到,获得积分10
29秒前
赘婿应助Lydia采纳,获得10
30秒前
张岱帅z完成签到,获得积分10
30秒前
Xian完成签到 ,获得积分10
30秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312299
求助须知:如何正确求助?哪些是违规求助? 2944955
关于积分的说明 8522182
捐赠科研通 2620750
什么是DOI,文献DOI怎么找? 1433015
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650153