亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning approaches to predict compressive strength of fly ash-based geopolymer concrete: A comprehensive review

地聚合物水泥 抗压强度 聚合物 粉煤灰 材料科学 复合材料
作者
Madushan Rathnayaka,Dulakshi Karunasinghe,Chamila Gunasekara,K. K. Wijesundara,Weena Lokuge,David W. Law
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:419: 135519-135519 被引量:20
标识
DOI:10.1016/j.conbuildmat.2024.135519
摘要

Geopolymer concrete is a sustainable replacement to the Ordinary Portland Cement (OPC) concrete as it mitigates some of the associated problems of OPC manufacturing such as greenhouse gas emission and natural resource depletion. There has been significant recent research in the design of fly ash-based geopolymer concrete using advanced machine learning techniques which can address some of the problems with classical mix design approaches. However, practical application of geopolymer concrete is limited due to lack of standard mix design procedure. This comprehensive review summarizes the current literature on machine learning methodologies to predict the compressive strength of fly ash-based geopolymer concrete. Firstly, the input parameters used for the machine learning model development are categorized based on feature selection or feature extraction. Secondly, available machine learning approaches are categorized based on analysis methods namely, nonlinear regression, ensemble learning, and evolutionary programming. The effect of hyperparameters on the individual model performance, and model comparison based on the prediction performance are also discussed to identify potentially more suitable model type and hyper parameter ranges. Further, the paper discusses the input variable's sensitivity towards the model performance which provides guidance towards future model developments. Overall, this paper will provide an understanding of the current state of machine learning approaches to predict the compressive strength of geopolymer concrete and the gaps in research for the development of models and achieving the required performance. Hence, the summarized knowledge will be highly beneficial to design prospective research towards sustainable cement-free concrete using fly ash.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
衣兮完成签到,获得积分10
8秒前
10秒前
量子星尘发布了新的文献求助150
20秒前
lycx发布了新的文献求助30
22秒前
炜大的我应助似冷月追风采纳,获得10
26秒前
30秒前
弦和发布了新的文献求助10
35秒前
香蕉觅云应助芜湖采纳,获得10
36秒前
HTniconico完成签到 ,获得积分10
41秒前
wanci应助弦和采纳,获得10
41秒前
花城完成签到 ,获得积分10
47秒前
48秒前
香蕉觅云应助shoolarli采纳,获得10
50秒前
芜湖发布了新的文献求助10
51秒前
JoeyJin完成签到,获得积分10
51秒前
binghe完成签到,获得积分10
51秒前
芜湖完成签到,获得积分10
1分钟前
1分钟前
1分钟前
shoolarli发布了新的文献求助10
1分钟前
Chroninus完成签到,获得积分10
1分钟前
沉静的迎荷完成签到 ,获得积分10
1分钟前
明理的蜗牛完成签到,获得积分10
1分钟前
5568完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
贺六浑发布了新的文献求助20
1分钟前
星辰大海应助舒心小海豚采纳,获得10
1分钟前
ddingk发布了新的文献求助10
1分钟前
yyt发布了新的文献求助30
1分钟前
如意向真完成签到,获得积分10
1分钟前
ddingk完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助蛋炒饭i采纳,获得10
1分钟前
酷波er应助crescendo采纳,获得10
1分钟前
2分钟前
crescendo发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063743
求助须知:如何正确求助?哪些是违规求助? 4287199
关于积分的说明 13358537
捐赠科研通 4105349
什么是DOI,文献DOI怎么找? 2247991
邀请新用户注册赠送积分活动 1253539
关于科研通互助平台的介绍 1184706