Machine learning approaches to predict compressive strength of fly ash-based geopolymer concrete: A comprehensive review

地聚合物水泥 抗压强度 聚合物 粉煤灰 材料科学 复合材料
作者
Madushan Rathnayaka,Dulakshi Karunasinghe,Chamila Gunasekara,K. K. Wijesundara,Weena Lokuge,David W. Law
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:419: 135519-135519 被引量:20
标识
DOI:10.1016/j.conbuildmat.2024.135519
摘要

Geopolymer concrete is a sustainable replacement to the Ordinary Portland Cement (OPC) concrete as it mitigates some of the associated problems of OPC manufacturing such as greenhouse gas emission and natural resource depletion. There has been significant recent research in the design of fly ash-based geopolymer concrete using advanced machine learning techniques which can address some of the problems with classical mix design approaches. However, practical application of geopolymer concrete is limited due to lack of standard mix design procedure. This comprehensive review summarizes the current literature on machine learning methodologies to predict the compressive strength of fly ash-based geopolymer concrete. Firstly, the input parameters used for the machine learning model development are categorized based on feature selection or feature extraction. Secondly, available machine learning approaches are categorized based on analysis methods namely, nonlinear regression, ensemble learning, and evolutionary programming. The effect of hyperparameters on the individual model performance, and model comparison based on the prediction performance are also discussed to identify potentially more suitable model type and hyper parameter ranges. Further, the paper discusses the input variable's sensitivity towards the model performance which provides guidance towards future model developments. Overall, this paper will provide an understanding of the current state of machine learning approaches to predict the compressive strength of geopolymer concrete and the gaps in research for the development of models and achieving the required performance. Hence, the summarized knowledge will be highly beneficial to design prospective research towards sustainable cement-free concrete using fly ash.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
renyi97完成签到,获得积分20
刚刚
刚刚
徐什么宝发布了新的文献求助10
刚刚
1秒前
wangguodewunian完成签到,获得积分10
1秒前
阿柒完成签到,获得积分10
1秒前
齐天大圣完成签到,获得积分10
2秒前
2秒前
ww完成签到,获得积分10
2秒前
2秒前
银河打工人完成签到,获得积分10
2秒前
tsuipeng发布了新的文献求助10
3秒前
4秒前
平常安双发布了新的文献求助30
4秒前
5秒前
5秒前
ww发布了新的文献求助10
5秒前
听说发布了新的文献求助10
6秒前
WANG完成签到,获得积分10
6秒前
6秒前
7秒前
寡妇哥完成签到 ,获得积分10
8秒前
WANG发布了新的文献求助10
9秒前
9秒前
明亮巨人完成签到 ,获得积分10
10秒前
10秒前
11秒前
耍酷代柔发布了新的文献求助10
11秒前
zxl完成签到,获得积分20
11秒前
清沐完成签到 ,获得积分10
11秒前
skw完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
scienceljk完成签到,获得积分10
14秒前
xumengyu发布了新的文献求助10
14秒前
酷波er应助lllllllll采纳,获得10
14秒前
姜招财发布了新的文献求助30
14秒前
城南发布了新的文献求助10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842319
求助须知:如何正确求助?哪些是违规求助? 3384417
关于积分的说明 10534630
捐赠科研通 3104925
什么是DOI,文献DOI怎么找? 1709841
邀请新用户注册赠送积分活动 823411
科研通“疑难数据库(出版商)”最低求助积分说明 774059