Machine learning approaches to predict compressive strength of fly ash-based geopolymer concrete: A comprehensive review

地聚合物水泥 抗压强度 聚合物 粉煤灰 材料科学 复合材料
作者
Madushan Rathnayaka,Dulakshi Karunasinghe,Chamila Gunasekara,K. K. Wijesundara,Weena Lokuge,David W. Law
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:419: 135519-135519 被引量:20
标识
DOI:10.1016/j.conbuildmat.2024.135519
摘要

Geopolymer concrete is a sustainable replacement to the Ordinary Portland Cement (OPC) concrete as it mitigates some of the associated problems of OPC manufacturing such as greenhouse gas emission and natural resource depletion. There has been significant recent research in the design of fly ash-based geopolymer concrete using advanced machine learning techniques which can address some of the problems with classical mix design approaches. However, practical application of geopolymer concrete is limited due to lack of standard mix design procedure. This comprehensive review summarizes the current literature on machine learning methodologies to predict the compressive strength of fly ash-based geopolymer concrete. Firstly, the input parameters used for the machine learning model development are categorized based on feature selection or feature extraction. Secondly, available machine learning approaches are categorized based on analysis methods namely, nonlinear regression, ensemble learning, and evolutionary programming. The effect of hyperparameters on the individual model performance, and model comparison based on the prediction performance are also discussed to identify potentially more suitable model type and hyper parameter ranges. Further, the paper discusses the input variable's sensitivity towards the model performance which provides guidance towards future model developments. Overall, this paper will provide an understanding of the current state of machine learning approaches to predict the compressive strength of geopolymer concrete and the gaps in research for the development of models and achieving the required performance. Hence, the summarized knowledge will be highly beneficial to design prospective research towards sustainable cement-free concrete using fly ash.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yx发布了新的文献求助10
刚刚
1秒前
6680668发布了新的文献求助10
1秒前
baobaonaixi完成签到,获得积分10
1秒前
1秒前
1秒前
三石完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
DAYTOY完成签到,获得积分10
3秒前
4秒前
4秒前
Flllllll完成签到,获得积分10
4秒前
喜悦成威完成签到,获得积分10
4秒前
酷波er应助南佳采纳,获得10
5秒前
5秒前
5秒前
Ava应助yan儿采纳,获得10
5秒前
丘比特应助纯真的莫茗采纳,获得10
5秒前
无花果应助勤恳的素阴采纳,获得10
5秒前
调皮的妙竹完成签到,获得积分10
6秒前
沫沫完成签到,获得积分10
6秒前
wzp发布了新的文献求助10
6秒前
6秒前
程程完成签到,获得积分20
6秒前
打打应助Ll采纳,获得10
6秒前
乐观发卡完成签到,获得积分20
7秒前
安详的帽子完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
vivi猫小咪发布了新的文献求助10
8秒前
Sue完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Lucas应助南方姑娘采纳,获得10
9秒前
10秒前
zhing完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762