Optimal capacity configuration of wind-photovoltaic-storage hybrid system: A study based on multi-objective optimization and sparrow search algorithm

可再生能源 光伏系统 储能 风力发电 计算机科学 数学优化 可靠性工程 工程类 功率(物理) 数学 电气工程 量子力学 物理
作者
Xiaomei Ma,Muhammet Deveci,Jie Yan,Yongqian Liu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:85: 110983-110983 被引量:9
标识
DOI:10.1016/j.est.2024.110983
摘要

The deployment of energy storage on the supply side effectively addresses the challenge posed by the intermittency and fluctuation of renewable energy. Optimizing capacity configuration is vital for maximizing the efficiency of wind/photovoltaic/storage hybrid power generation systems. Firstly, a deep learning-based Wasserstein GAN-gradient penalty (WGAN-GP) model is employed to generate 9 representative wind and solar power output scenarios. Subsequently, an optimization model for capacity configuration in the hybrid system is formulated, aiming to minimize total costs and optimize integrated parameter. The sparrow search algorithm is utilized to solve this model. A case study is conducted on a large-scale hybrid system in a northwestern region in China. Based on model calculations, the proposed energy storage allocation across different scenarios can reduce renewable energy curtailment by 3.6 % to 14.7 % compared to the absence of energy storage. Additionally, utilizing time-of-use electricity prices, this solution can yield annual savings of up to 9.158×107 CNY. In comparison to the current local energy storage configuration schemes, the curtailment rate of renewable energy decreases by 0.7 % to 6.2 % in different scenarios. It is worth mentioning that, in most scenarios, the annual average economic benefits from reducing curtailment according to the proposed method are in the same order of magnitude as the increased investment due to energy storage capacities. These findings validate the effectiveness and practicality of the proposed model and solution approach, providing valuable insights for planning wind-photovoltaic-storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐人杰完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
每天我都睡得好完成签到 ,获得积分10
2秒前
喜悦的尔阳完成签到,获得积分10
2秒前
3秒前
脑洞疼应助zane采纳,获得10
3秒前
思源应助小贾爱喝冰美式采纳,获得30
3秒前
5秒前
闪闪小小完成签到 ,获得积分10
5秒前
Ava应助Aaaaaajjjj采纳,获得10
6秒前
7秒前
有缘人发布了新的文献求助30
7秒前
pcm完成签到 ,获得积分10
7秒前
科目三应助sjdghgdhs采纳,获得10
7秒前
Singularity应助负责的方盒采纳,获得10
7秒前
10秒前
annafan完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
华仔应助cai采纳,获得10
10秒前
wax发布了新的文献求助10
11秒前
饱满以松完成签到 ,获得积分10
11秒前
13秒前
科研通AI5应助火星上亦绿采纳,获得10
14秒前
qiqi1111发布了新的文献求助10
16秒前
16秒前
木瑾完成签到 ,获得积分10
16秒前
JamesPei应助weiweiwei采纳,获得10
16秒前
17秒前
19秒前
蔡雯完成签到,获得积分10
19秒前
潘子完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
赘婿应助时迁采纳,获得10
21秒前
追寻鞋垫发布了新的文献求助10
23秒前
无花果应助科研通管家采纳,获得10
23秒前
无花果应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
顾矜应助科研通管家采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659480
求助须知:如何正确求助?哪些是违规求助? 3221052
关于积分的说明 9738890
捐赠科研通 2930374
什么是DOI,文献DOI怎么找? 1604392
邀请新用户注册赠送积分活动 757271
科研通“疑难数据库(出版商)”最低求助积分说明 734315