Developing a novel image marker to predict the clinical outcome of neoadjuvant chemotherapy (NACT) for ovarian cancer patients

化疗 卵巢癌 肿瘤科 医学 内科学 新辅助治疗 癌症 放射科 乳腺癌
作者
Ke Zhang,Neman Abdoli,Patrik Gilley,Youkabed Sadri,Xuxin Chen,Theresa Thai,Lauren Dockery,Kathleen N. Moore,Robert S. Mannel,Yuchen Qiu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108240-108240 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108240
摘要

Neoadjuvant chemotherapy (NACT) is one kind of treatment for advanced stage ovarian cancer patients. However, due to the nature of tumor heterogeneity, the clinical outcomes to NACT vary significantly among different subgroups. Partial responses to NACT may lead to suboptimal debulking surgery, which will result in adverse prognosis. To address this clinical challenge, the purpose of this study is to develop a novel image marker to achieve high accuracy prognosis prediction of NACT at an early stage. For this purpose, we first computed a total of 1373 radiomics features to quantify the tumor characteristics, which can be grouped into three categories: geometric, intensity, and texture features. Second, all these features were optimized by principal component analysis algorithm to generate a compact and informative feature cluster. This cluster was used as input for developing and optimizing support vector machine (SVM) based classifiers, which indicated the likelihood of receiving suboptimal cytoreduction after the NACT treatment. Two different kernels for SVM algorithm were explored and compared. A total of 42 ovarian cancer cases were retrospectively collected to validate the scheme. A nested leave-one-out cross-validation framework was adopted for model performance assessment. The results demonstrated that the model with a Gaussian radial basis function kernel SVM yielded an AUC (area under the ROC [receiver characteristic operation] curve) of 0.806 ± 0.078. Meanwhile, this model achieved overall accuracy (ACC) of 83.3%, positive predictive value (PPV) of 81.8%, and negative predictive value (NPV) of 83.9%. This study provides meaningful information for the development of radiomics based image markers in NACT treatment outcome prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溫蒂发布了新的文献求助10
刚刚
2秒前
2秒前
now发布了新的文献求助10
2秒前
3秒前
王思鲁完成签到,获得积分10
3秒前
4秒前
5秒前
bunny完成签到,获得积分10
6秒前
五斤老陈醋完成签到,获得积分10
6秒前
7秒前
Gary发布了新的文献求助10
9秒前
gyhmybsy发布了新的文献求助10
9秒前
9秒前
songnvshi完成签到 ,获得积分10
9秒前
疾风完成签到,获得积分20
9秒前
炙热苠关注了科研通微信公众号
10秒前
Cutewan发布了新的文献求助10
10秒前
媛媛完成签到 ,获得积分10
10秒前
13秒前
纪富完成签到 ,获得积分10
14秒前
嘻哈发布了新的文献求助10
15秒前
15秒前
难过的又柔完成签到,获得积分10
16秒前
ylf完成签到,获得积分10
16秒前
17秒前
Gary完成签到,获得积分10
17秒前
依依完成签到 ,获得积分10
20秒前
yln发布了新的文献求助10
20秒前
win发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
帅气天荷完成签到 ,获得积分10
24秒前
dd完成签到,获得积分10
24秒前
gyhmybsy完成签到,获得积分10
25秒前
土川应助于是采纳,获得10
26秒前
嘻哈完成签到,获得积分10
26秒前
MY完成签到,获得积分10
26秒前
溫蒂完成签到,获得积分10
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327862
求助须知:如何正确求助?哪些是违规求助? 2958065
关于积分的说明 8588895
捐赠科研通 2636304
什么是DOI,文献DOI怎么找? 1442913
科研通“疑难数据库(出版商)”最低求助积分说明 668411
邀请新用户注册赠送积分活动 655564