Developing a novel image marker to predict the clinical outcome of neoadjuvant chemotherapy (NACT) for ovarian cancer patients

化疗 卵巢癌 肿瘤科 医学 内科学 新辅助治疗 癌症 放射科 乳腺癌
作者
Ke Zhang,Neman Abdoli,Patrik Gilley,Youkabed Sadri,Xuxin Chen,Theresa Thai,Lauren Dockery,Kathleen N. Moore,Robert S. Mannel,Yuchen Qiu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108240-108240 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108240
摘要

Neoadjuvant chemotherapy (NACT) is one kind of treatment for advanced stage ovarian cancer patients. However, due to the nature of tumor heterogeneity, the clinical outcomes to NACT vary significantly among different subgroups. Partial responses to NACT may lead to suboptimal debulking surgery, which will result in adverse prognosis. To address this clinical challenge, the purpose of this study is to develop a novel image marker to achieve high accuracy prognosis prediction of NACT at an early stage. For this purpose, we first computed a total of 1373 radiomics features to quantify the tumor characteristics, which can be grouped into three categories: geometric, intensity, and texture features. Second, all these features were optimized by principal component analysis algorithm to generate a compact and informative feature cluster. This cluster was used as input for developing and optimizing support vector machine (SVM) based classifiers, which indicated the likelihood of receiving suboptimal cytoreduction after the NACT treatment. Two different kernels for SVM algorithm were explored and compared. A total of 42 ovarian cancer cases were retrospectively collected to validate the scheme. A nested leave-one-out cross-validation framework was adopted for model performance assessment. The results demonstrated that the model with a Gaussian radial basis function kernel SVM yielded an AUC (area under the ROC [receiver characteristic operation] curve) of 0.806 ± 0.078. Meanwhile, this model achieved overall accuracy (ACC) of 83.3%, positive predictive value (PPV) of 81.8%, and negative predictive value (NPV) of 83.9%. This study provides meaningful information for the development of radiomics based image markers in NACT treatment outcome prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助zmy采纳,获得10
1秒前
英姑应助吗喽采纳,获得10
2秒前
包子发布了新的文献求助10
3秒前
菠萝大菠萝完成签到,获得积分10
3秒前
Kakaluote完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
学术完成签到 ,获得积分10
5秒前
FashionBoy应助湖以采纳,获得10
5秒前
FashionBoy应助lixiang采纳,获得10
5秒前
Zutilm完成签到,获得积分10
7秒前
7秒前
随机昵称发布了新的文献求助80
8秒前
踏实青槐发布了新的文献求助10
11秒前
包子完成签到,获得积分10
12秒前
七页禾发布了新的文献求助10
12秒前
充电宝应助54小甜采纳,获得10
13秒前
SYLH应助jueshadi采纳,获得10
14秒前
15秒前
15秒前
狂野白梅发布了新的文献求助10
16秒前
wxd完成签到,获得积分10
18秒前
18秒前
乐乐应助阔达的雁凡采纳,获得10
19秒前
zmy发布了新的文献求助10
21秒前
科研小白发布了新的文献求助30
21秒前
22秒前
amore完成签到,获得积分10
22秒前
缪风华发布了新的文献求助10
22秒前
田様应助七页禾采纳,获得10
23秒前
Owen应助mingzhi采纳,获得10
24秒前
英吉利25发布了新的文献求助10
25秒前
31秒前
SYLH应助jueshadi采纳,获得10
31秒前
32秒前
white完成签到,获得积分10
32秒前
旅人完成签到 ,获得积分10
33秒前
33秒前
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499