Thaw Slump Susceptibility Mapping Based on Sample Optimization and Ensemble Learning Techniques in Qinghai-Tibet Railway Corridor

随机森林 支持向量机 环境科学 机器学习 永久冻土 集成学习 地质学 计算机科学 遥感 模式识别(心理学) 人工智能 海洋学
作者
Yi He,Tianbao Huo,Binghai Gao,Qing Zhu,Long Jin,Jian Chen,Zhang Qing,Jiapeng Tang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 5443-5459 被引量:6
标识
DOI:10.1109/jstars.2024.3368039
摘要

Thaw slump susceptibility mapping (TSSM) of Qinghai-Tibet Railway corridor (QTRC) is the prerequisite and basis for disaster assessment and prevention of permafrost projects. The objective of this study is to construct ensemble learning models based on single classifier models to generate the TSSM of the QTRC, compare and verify the performance of the models, and further explore the relationship between the high susceptibility area and environmental factors of the QTRC. The collinearity analysis was carried out by selecting 14 thaw slump conditioning factors (TSCFs). We used the balance bagging method for sample optimization, and the data set was divided into 70% training set and 30% verification set. Convolutional neural network (CNN), multilayer perceptron (MLP), support vector regression (SVR), random forest (RF) single classifiers were selected to construct blending and stacking ensemble learning models for the TSSM. The results showed that there was no collinearity among the 14 TSCFS. The comparison of model performance revealed that all models had good performance, but the constructed stacking and blending ensemble learning models had stable performance and high prediction accuracy for TSSM. The stacking ensemble learning model had the best effect, and the area under curve (AUC) value of receiver operating characteristic (ROC) curve reached 0.9607. It showed that the generated TSSM of QTRC based on stacking ensemble learning model had the highest reliability. The QTRC has local areas with high thaw slump susceptibility, mainly concentrated in the permafrost areas with high altitude, high slope, adjacent faults, sparse vegetation, ice and snow and the more cumulative precipitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kk发布了新的文献求助10
刚刚
tong童发布了新的文献求助10
2秒前
一如既往完成签到 ,获得积分10
2秒前
dream发布了新的文献求助20
3秒前
Mipe完成签到,获得积分10
3秒前
3秒前
老胡给我鼠完成签到,获得积分10
4秒前
ty完成签到,获得积分10
5秒前
斯文败类应助111采纳,获得10
6秒前
6秒前
微糖发布了新的文献求助10
6秒前
babubu发布了新的文献求助20
7秒前
Vera61完成签到,获得积分10
9秒前
123发布了新的文献求助10
10秒前
11秒前
11秒前
1651539939完成签到,获得积分10
14秒前
orixero应助Vera61采纳,获得10
15秒前
清新的问枫完成签到,获得积分10
15秒前
善学以致用应助ClancyJacky采纳,获得10
15秒前
体贴的靖仇完成签到 ,获得积分10
15秒前
动脉血气分析完成签到,获得积分10
16秒前
zombie关注了科研通微信公众号
16秒前
18秒前
不想看文献完成签到 ,获得积分10
20秒前
彭于晏应助你爱我我爱你采纳,获得10
20秒前
21秒前
LEOhard完成签到,获得积分10
21秒前
汤汤完成签到,获得积分20
21秒前
sherrt完成签到,获得积分10
22秒前
23秒前
猇会不会完成签到,获得积分10
23秒前
23秒前
共享精神应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
Endlessway应助科研通管家采纳,获得20
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233489
求助须知:如何正确求助?哪些是违规求助? 2880104
关于积分的说明 8213669
捐赠科研通 2547469
什么是DOI,文献DOI怎么找? 1376998
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154