A Coding Framework and Benchmark towards Low-Bitrate Video Understanding

计算机科学 编解码器 人工智能 数据压缩 编码(社会科学) 机器学习 计算机硬件 数学 统计
作者
Yuan Tian,Guo Lu,Yichao Yan,Guangtao Zhai,Li Chen,Zhiyong Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19 被引量:4
标识
DOI:10.1109/tpami.2024.3367879
摘要

Video compression is indispensable to most video analysis systems. Despite saving the transportation bandwidth, it also deteriorates downstream video understanding tasks, especially at low-bitrate settings. To systematically investigate this problem, we first thoroughly review the previous methods, revealing that three principles, i.e., task-decoupled, label-free, and data-emerged semantic prior, are critical to a machine-friendly coding framework but are not fully satisfied so far. In this paper, we propose a traditional-neural mixed coding framework that simultaneously fulfills all these principles, by taking advantage of both traditional codecs and neural networks (NNs). On one hand, the traditional codecs can efficiently encode the pixel signal of videos but may distort the semantic information. On the other hand, highly non-linear NNs are proficient in condensing video semantics into a compact representation. The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved w.r.t. the coding procedure, which is spontaneously learned from unlabeled data in a self-supervised manner. The videos collaboratively decoded from two streams (codec and NN) are of rich semantics, as well as visually photo-realistic, empirically boosting several mainstream downstream video analysis task performances without any post-adaptation procedure. Furthermore, by introducing the attention mechanism and adaptive modeling scheme, the video semantic modeling ability of our approach is further enhanced. Fianlly, we build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach. All codes, data, and models will be open-sourced for facilitating future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ECCE713完成签到,获得积分10
刚刚
小刺完成签到,获得积分10
刚刚
sweetbearm应助zxl采纳,获得10
刚刚
优秀的盼夏完成签到,获得积分10
1秒前
传奇3应助沉敛一生采纳,获得10
1秒前
科研通AI5应助咕噜仔采纳,获得50
1秒前
lm完成签到,获得积分20
1秒前
FFF发布了新的文献求助10
2秒前
小二郎应助哈哈采纳,获得10
2秒前
乐乐应助juan采纳,获得10
3秒前
txyouniverse完成签到 ,获得积分10
3秒前
CodeCraft应助纷花雨采纳,获得10
3秒前
小十二完成签到,获得积分10
3秒前
Tianxu Li发布了新的文献求助10
4秒前
月白完成签到,获得积分10
4秒前
淡淡de橙子完成签到,获得积分10
5秒前
含蓄哈密瓜完成签到,获得积分20
5秒前
6秒前
小蘑菇应助白华苍松采纳,获得10
6秒前
董咚咚完成签到,获得积分10
8秒前
洋芋片完成签到 ,获得积分10
8秒前
二尖瓣后叶完成签到,获得积分10
9秒前
zc完成签到,获得积分10
9秒前
酷波er应助dildil采纳,获得10
9秒前
科研通AI5应助科研小民工采纳,获得10
10秒前
觅桃乌龙发布了新的文献求助10
10秒前
张有志完成签到,获得积分10
10秒前
JoyceeZHONG完成签到,获得积分10
10秒前
Shine完成签到 ,获得积分10
10秒前
11秒前
King16发布了新的文献求助10
12秒前
哲000完成签到,获得积分10
12秒前
Tutusamo发布了新的文献求助10
12秒前
Ning完成签到,获得积分10
13秒前
科研通AI5应助欢欢采纳,获得10
13秒前
xiaozou55完成签到 ,获得积分10
13秒前
14秒前
浩浩浩完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759