A Coding Framework and Benchmark towards Low-Bitrate Video Understanding

计算机科学 编解码器 人工智能 数据压缩 编码(社会科学) 机器学习 统计 数学 计算机硬件
作者
Yuan Tian,Guo Lu,Yichao Yan,Guangtao Zhai,Li Chen,Zhiyong Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19 被引量:4
标识
DOI:10.1109/tpami.2024.3367879
摘要

Video compression is indispensable to most video analysis systems. Despite saving the transportation bandwidth, it also deteriorates downstream video understanding tasks, especially at low-bitrate settings. To systematically investigate this problem, we first thoroughly review the previous methods, revealing that three principles, i.e., task-decoupled, label-free, and data-emerged semantic prior, are critical to a machine-friendly coding framework but are not fully satisfied so far. In this paper, we propose a traditional-neural mixed coding framework that simultaneously fulfills all these principles, by taking advantage of both traditional codecs and neural networks (NNs). On one hand, the traditional codecs can efficiently encode the pixel signal of videos but may distort the semantic information. On the other hand, highly non-linear NNs are proficient in condensing video semantics into a compact representation. The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved w.r.t. the coding procedure, which is spontaneously learned from unlabeled data in a self-supervised manner. The videos collaboratively decoded from two streams (codec and NN) are of rich semantics, as well as visually photo-realistic, empirically boosting several mainstream downstream video analysis task performances without any post-adaptation procedure. Furthermore, by introducing the attention mechanism and adaptive modeling scheme, the video semantic modeling ability of our approach is further enhanced. Fianlly, we build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach. All codes, data, and models will be open-sourced for facilitating future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫葵阴完成签到,获得积分10
刚刚
刚刚
123123完成签到,获得积分10
刚刚
刚刚
1秒前
ZY完成签到,获得积分10
1秒前
12138完成签到 ,获得积分10
1秒前
学术小白完成签到,获得积分10
1秒前
1秒前
xiaotailan完成签到,获得积分10
2秒前
Suo完成签到,获得积分20
2秒前
2秒前
thuuu完成签到,获得积分10
3秒前
前行者完成签到,获得积分10
3秒前
研友_VZG7GZ应助李晶晶采纳,获得10
3秒前
harmy发布了新的文献求助10
3秒前
4秒前
4秒前
空133发布了新的文献求助10
4秒前
丰富的复天完成签到,获得积分10
4秒前
Nature发布了新的文献求助10
5秒前
kp发布了新的文献求助10
5秒前
5秒前
5秒前
haohoa发布了新的文献求助10
5秒前
6秒前
amo完成签到,获得积分10
6秒前
空凌完成签到,获得积分10
6秒前
6秒前
东晓发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
月岛滴滴完成签到,获得积分10
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
柳絮发布了新的文献求助10
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
llllxj发布了新的文献求助10
7秒前
嘞是举仔应助科研通管家采纳,获得30
7秒前
量子星尘发布了新的文献求助10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699126
求助须知:如何正确求助?哪些是违规求助? 5129127
关于积分的说明 15224490
捐赠科研通 4854057
什么是DOI,文献DOI怎么找? 2604442
邀请新用户注册赠送积分活动 1555961
关于科研通互助平台的介绍 1514252