A Coding Framework and Benchmark towards Low-Bitrate Video Understanding

计算机科学 编解码器 人工智能 数据压缩 编码(社会科学) 机器学习 统计 数学 计算机硬件
作者
Yuan Tian,Guo Lu,Yichao Yan,Guangtao Zhai,Li Chen,Zhiyong Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-19 被引量:4
标识
DOI:10.1109/tpami.2024.3367879
摘要

Video compression is indispensable to most video analysis systems. Despite saving the transportation bandwidth, it also deteriorates downstream video understanding tasks, especially at low-bitrate settings. To systematically investigate this problem, we first thoroughly review the previous methods, revealing that three principles, i.e., task-decoupled, label-free, and data-emerged semantic prior, are critical to a machine-friendly coding framework but are not fully satisfied so far. In this paper, we propose a traditional-neural mixed coding framework that simultaneously fulfills all these principles, by taking advantage of both traditional codecs and neural networks (NNs). On one hand, the traditional codecs can efficiently encode the pixel signal of videos but may distort the semantic information. On the other hand, highly non-linear NNs are proficient in condensing video semantics into a compact representation. The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved w.r.t. the coding procedure, which is spontaneously learned from unlabeled data in a self-supervised manner. The videos collaboratively decoded from two streams (codec and NN) are of rich semantics, as well as visually photo-realistic, empirically boosting several mainstream downstream video analysis task performances without any post-adaptation procedure. Furthermore, by introducing the attention mechanism and adaptive modeling scheme, the video semantic modeling ability of our approach is further enhanced. Fianlly, we build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach. All codes, data, and models will be open-sourced for facilitating future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惠嘟嘟完成签到,获得积分10
1秒前
勤劳翰发布了新的文献求助10
1秒前
1秒前
李健应助完美的橘子采纳,获得30
1秒前
2秒前
依依完成签到 ,获得积分10
2秒前
2秒前
友好惜儿完成签到 ,获得积分10
2秒前
黑化小狗发布了新的文献求助20
2秒前
qiqi完成签到 ,获得积分10
3秒前
azw完成签到,获得积分10
4秒前
万能图书馆应助自然1111采纳,获得10
4秒前
沉默的婴发布了新的文献求助10
5秒前
nz完成签到,获得积分10
5秒前
yuanhao发布了新的文献求助10
6秒前
6秒前
6秒前
zl完成签到 ,获得积分10
7秒前
Wind发布了新的文献求助10
8秒前
8秒前
完美世界应助只如初采纳,获得10
9秒前
9秒前
supersunshine完成签到,获得积分10
9秒前
wys完成签到 ,获得积分10
9秒前
9秒前
9秒前
传奇3应助大白采纳,获得10
9秒前
乔垣结衣发布了新的文献求助20
10秒前
10秒前
孙福禄应助诚心小兔子采纳,获得10
10秒前
AL发布了新的文献求助10
10秒前
完美的橘子完成签到,获得积分20
10秒前
动人的怀柔完成签到,获得积分10
11秒前
11秒前
时闲应助yuanhao采纳,获得10
11秒前
果果发布了新的文献求助10
11秒前
即使没有月亮完成签到,获得积分10
11秒前
小二郎应助enen采纳,获得10
12秒前
CodeCraft应助斯文幻儿采纳,获得10
12秒前
852应助高兴的平露采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650