A Coding Framework and Benchmark towards Low-Bitrate Video Understanding

计算机科学 编解码器 人工智能 数据压缩 编码(社会科学) 机器学习 统计 数学 计算机硬件
作者
Yuan Tian,Guo Lu,Yichao Yan,Guangtao Zhai,Li Chen,Zhiyong Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-19 被引量:4
标识
DOI:10.1109/tpami.2024.3367879
摘要

Video compression is indispensable to most video analysis systems. Despite saving the transportation bandwidth, it also deteriorates downstream video understanding tasks, especially at low-bitrate settings. To systematically investigate this problem, we first thoroughly review the previous methods, revealing that three principles, i.e., task-decoupled, label-free, and data-emerged semantic prior, are critical to a machine-friendly coding framework but are not fully satisfied so far. In this paper, we propose a traditional-neural mixed coding framework that simultaneously fulfills all these principles, by taking advantage of both traditional codecs and neural networks (NNs). On one hand, the traditional codecs can efficiently encode the pixel signal of videos but may distort the semantic information. On the other hand, highly non-linear NNs are proficient in condensing video semantics into a compact representation. The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved w.r.t. the coding procedure, which is spontaneously learned from unlabeled data in a self-supervised manner. The videos collaboratively decoded from two streams (codec and NN) are of rich semantics, as well as visually photo-realistic, empirically boosting several mainstream downstream video analysis task performances without any post-adaptation procedure. Furthermore, by introducing the attention mechanism and adaptive modeling scheme, the video semantic modeling ability of our approach is further enhanced. Fianlly, we build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach. All codes, data, and models will be open-sourced for facilitating future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助yanchen219采纳,获得10
1秒前
芜衡落砂完成签到,获得积分10
1秒前
陈陈陈陈陈完成签到,获得积分10
1秒前
可爱的函函应助谨慎采白采纳,获得10
2秒前
情怀应助una采纳,获得10
2秒前
3秒前
wrl2023完成签到,获得积分10
3秒前
科研通AI6应助枫丶采纳,获得10
5秒前
星辰发布了新的文献求助10
5秒前
bkagyin应助称心寒松采纳,获得10
5秒前
飞白发布了新的文献求助10
6秒前
7秒前
冷淡芝麻完成签到,获得积分10
8秒前
1111222完成签到,获得积分10
8秒前
丘比特应助孤独秋白采纳,获得10
8秒前
Jasper应助乔治采纳,获得10
9秒前
9秒前
合适的猎豹完成签到,获得积分10
11秒前
漂亮元蝶发布了新的文献求助10
11秒前
bkagyin应助xh采纳,获得10
12秒前
huanhai发布了新的文献求助10
12秒前
12秒前
张一鸣完成签到,获得积分10
13秒前
称心寒松发布了新的文献求助10
13秒前
aa完成签到,获得积分10
14秒前
wendy完成签到,获得积分10
16秒前
921完成签到,获得积分10
16秒前
17秒前
17秒前
天天快乐应助漂亮元蝶采纳,获得10
17秒前
机灵班应助LAH1018采纳,获得10
17秒前
17秒前
上官若男应助孤独秋白采纳,获得30
18秒前
Jingjing发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
20秒前
乐乐应助好蓝采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263504
求助须知:如何正确求助?哪些是违规求助? 4424042
关于积分的说明 13771651
捐赠科研通 4299063
什么是DOI,文献DOI怎么找? 2358884
邀请新用户注册赠送积分活动 1355136
关于科研通互助平台的介绍 1316351