A Coding Framework and Benchmark towards Low-Bitrate Video Understanding

计算机科学 编解码器 人工智能 数据压缩 编码(社会科学) 机器学习 计算机硬件 数学 统计
作者
Yuan Tian,Guo Lu,Yichao Yan,Guangtao Zhai,Li Chen,Zhiyong Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19 被引量:4
标识
DOI:10.1109/tpami.2024.3367879
摘要

Video compression is indispensable to most video analysis systems. Despite saving the transportation bandwidth, it also deteriorates downstream video understanding tasks, especially at low-bitrate settings. To systematically investigate this problem, we first thoroughly review the previous methods, revealing that three principles, i.e., task-decoupled, label-free, and data-emerged semantic prior, are critical to a machine-friendly coding framework but are not fully satisfied so far. In this paper, we propose a traditional-neural mixed coding framework that simultaneously fulfills all these principles, by taking advantage of both traditional codecs and neural networks (NNs). On one hand, the traditional codecs can efficiently encode the pixel signal of videos but may distort the semantic information. On the other hand, highly non-linear NNs are proficient in condensing video semantics into a compact representation. The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved w.r.t. the coding procedure, which is spontaneously learned from unlabeled data in a self-supervised manner. The videos collaboratively decoded from two streams (codec and NN) are of rich semantics, as well as visually photo-realistic, empirically boosting several mainstream downstream video analysis task performances without any post-adaptation procedure. Furthermore, by introducing the attention mechanism and adaptive modeling scheme, the video semantic modeling ability of our approach is further enhanced. Fianlly, we build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach. All codes, data, and models will be open-sourced for facilitating future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张作雅发布了新的文献求助10
3秒前
王肖宁完成签到,获得积分10
3秒前
4秒前
RANSETI发布了新的文献求助10
5秒前
浮游应助cbz采纳,获得10
5秒前
善学以致用应助领会采纳,获得10
6秒前
眼睛大的德地完成签到,获得积分10
8秒前
浮游应助你好采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
123完成签到,获得积分10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
小芋完成签到,获得积分10
10秒前
11秒前
小王完成签到,获得积分20
11秒前
jiangaimin完成签到,获得积分10
15秒前
我是老大应助lxr采纳,获得10
16秒前
rain完成签到,获得积分10
16秒前
乐乐应助兴奋的万声采纳,获得10
18秒前
科研通AI2S应助T_KYG采纳,获得10
20秒前
求助人员发布了新的文献求助10
20秒前
hanyangyang完成签到,获得积分20
22秒前
linlin完成签到,获得积分10
23秒前
24秒前
25秒前
哼哼大王完成签到,获得积分20
26秒前
27秒前
ceeray23应助尊敬的丹烟采纳,获得10
27秒前
lxr发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571861
求助须知:如何正确求助?哪些是违规求助? 4657052
关于积分的说明 14718892
捐赠科研通 4597857
什么是DOI,文献DOI怎么找? 2523425
邀请新用户注册赠送积分活动 1494258
关于科研通互助平台的介绍 1464345