A Coding Framework and Benchmark towards Low-Bitrate Video Understanding

计算机科学 编解码器 人工智能 数据压缩 编码(社会科学) 机器学习 统计 数学 计算机硬件
作者
Yuan Tian,Guo Lu,Yichao Yan,Guangtao Zhai,Li Chen,Zhiyong Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19 被引量:4
标识
DOI:10.1109/tpami.2024.3367879
摘要

Video compression is indispensable to most video analysis systems. Despite saving the transportation bandwidth, it also deteriorates downstream video understanding tasks, especially at low-bitrate settings. To systematically investigate this problem, we first thoroughly review the previous methods, revealing that three principles, i.e., task-decoupled, label-free, and data-emerged semantic prior, are critical to a machine-friendly coding framework but are not fully satisfied so far. In this paper, we propose a traditional-neural mixed coding framework that simultaneously fulfills all these principles, by taking advantage of both traditional codecs and neural networks (NNs). On one hand, the traditional codecs can efficiently encode the pixel signal of videos but may distort the semantic information. On the other hand, highly non-linear NNs are proficient in condensing video semantics into a compact representation. The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved w.r.t. the coding procedure, which is spontaneously learned from unlabeled data in a self-supervised manner. The videos collaboratively decoded from two streams (codec and NN) are of rich semantics, as well as visually photo-realistic, empirically boosting several mainstream downstream video analysis task performances without any post-adaptation procedure. Furthermore, by introducing the attention mechanism and adaptive modeling scheme, the video semantic modeling ability of our approach is further enhanced. Fianlly, we build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach. All codes, data, and models will be open-sourced for facilitating future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kirsten发布了新的文献求助10
刚刚
led灯泡发布了新的文献求助10
刚刚
星辰发布了新的文献求助10
刚刚
1秒前
五月好难发布了新的文献求助10
1秒前
EpQAQ完成签到,获得积分10
2秒前
2秒前
神勇难胜完成签到 ,获得积分10
2秒前
邱海华发布了新的文献求助10
2秒前
3秒前
mxr完成签到,获得积分10
3秒前
khh完成签到 ,获得积分10
4秒前
Akim应助vvA11采纳,获得10
4秒前
4秒前
4秒前
蓝天发布了新的文献求助10
6秒前
keyaner发布了新的文献求助10
6秒前
是谁还没睡完成签到 ,获得积分10
6秒前
6秒前
7秒前
科研通AI6应助yangyajie采纳,获得10
8秒前
丘比特应助lawrenceip0926采纳,获得10
8秒前
8秒前
KIKI完成签到,获得积分10
8秒前
fuchao发布了新的文献求助10
8秒前
khh关注了科研通微信公众号
8秒前
9秒前
李伟完成签到,获得积分10
9秒前
星辰完成签到,获得积分10
9秒前
sakyadamo发布了新的文献求助10
9秒前
科研通AI6应助上山的吗喽采纳,获得10
10秒前
悦耳的灵完成签到 ,获得积分10
10秒前
cheng发布了新的文献求助10
11秒前
11秒前
Vv完成签到 ,获得积分10
11秒前
小二郎应助Jerez采纳,获得10
12秒前
Jasper应助韩修杰采纳,获得10
12秒前
orixero应助10711采纳,获得10
12秒前
积极嚓茶完成签到,获得积分10
13秒前
Hiiiiii发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901