亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Coding Framework and Benchmark towards Low-Bitrate Video Understanding

计算机科学 编解码器 人工智能 数据压缩 编码(社会科学) 机器学习 统计 数学 计算机硬件
作者
Yuan Tian,Guo Lu,Yichao Yan,Guangtao Zhai,Li Chen,Zhiyong Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19 被引量:4
标识
DOI:10.1109/tpami.2024.3367879
摘要

Video compression is indispensable to most video analysis systems. Despite saving the transportation bandwidth, it also deteriorates downstream video understanding tasks, especially at low-bitrate settings. To systematically investigate this problem, we first thoroughly review the previous methods, revealing that three principles, i.e., task-decoupled, label-free, and data-emerged semantic prior, are critical to a machine-friendly coding framework but are not fully satisfied so far. In this paper, we propose a traditional-neural mixed coding framework that simultaneously fulfills all these principles, by taking advantage of both traditional codecs and neural networks (NNs). On one hand, the traditional codecs can efficiently encode the pixel signal of videos but may distort the semantic information. On the other hand, highly non-linear NNs are proficient in condensing video semantics into a compact representation. The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved w.r.t. the coding procedure, which is spontaneously learned from unlabeled data in a self-supervised manner. The videos collaboratively decoded from two streams (codec and NN) are of rich semantics, as well as visually photo-realistic, empirically boosting several mainstream downstream video analysis task performances without any post-adaptation procedure. Furthermore, by introducing the attention mechanism and adaptive modeling scheme, the video semantic modeling ability of our approach is further enhanced. Fianlly, we build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach. All codes, data, and models will be open-sourced for facilitating future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助十三采纳,获得10
1秒前
192724836完成签到,获得积分20
7秒前
小锤发布了新的文献求助10
12秒前
含蓄的寄翠完成签到,获得积分10
14秒前
科研通AI2S应助192724836采纳,获得10
26秒前
tinyliiyong完成签到,获得积分10
35秒前
38秒前
sss完成签到 ,获得积分10
40秒前
小锤完成签到 ,获得积分20
57秒前
李爱国应助科研通管家采纳,获得10
57秒前
58秒前
1分钟前
彭于晏应助十三采纳,获得10
1分钟前
布同完成签到,获得积分10
1分钟前
1分钟前
林思完成签到,获得积分10
1分钟前
老王家的二姑娘完成签到 ,获得积分10
1分钟前
平常的长颈鹿完成签到,获得积分10
1分钟前
852应助平常的长颈鹿采纳,获得10
1分钟前
1分钟前
FashionBoy应助KSung采纳,获得10
1分钟前
1分钟前
小胖子发布了新的文献求助10
1分钟前
机灵自中发布了新的文献求助50
2分钟前
机灵自中完成签到,获得积分10
2分钟前
2分钟前
动人的笑白完成签到,获得积分20
2分钟前
KSung发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zhaosheng发布了新的文献求助10
2分钟前
斯文败类应助zhaosheng采纳,获得10
2分钟前
远道发布了新的文献求助30
2分钟前
jwj完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
kk_1315完成签到,获得积分10
3分钟前
3分钟前
江知之完成签到 ,获得积分0
3分钟前
trying发布了新的文献求助10
3分钟前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072598
求助须知:如何正确求助?哪些是违规求助? 2726326
关于积分的说明 7493683
捐赠科研通 2374098
什么是DOI,文献DOI怎么找? 1258887
科研通“疑难数据库(出版商)”最低求助积分说明 610394
版权声明 596983