A Coding Framework and Benchmark towards Low-Bitrate Video Understanding

计算机科学 编解码器 人工智能 数据压缩 编码(社会科学) 机器学习 统计 数学 计算机硬件
作者
Yuan Tian,Guo Lu,Yichao Yan,Guangtao Zhai,Li Chen,Zhiyong Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19 被引量:4
标识
DOI:10.1109/tpami.2024.3367879
摘要

Video compression is indispensable to most video analysis systems. Despite saving the transportation bandwidth, it also deteriorates downstream video understanding tasks, especially at low-bitrate settings. To systematically investigate this problem, we first thoroughly review the previous methods, revealing that three principles, i.e., task-decoupled, label-free, and data-emerged semantic prior, are critical to a machine-friendly coding framework but are not fully satisfied so far. In this paper, we propose a traditional-neural mixed coding framework that simultaneously fulfills all these principles, by taking advantage of both traditional codecs and neural networks (NNs). On one hand, the traditional codecs can efficiently encode the pixel signal of videos but may distort the semantic information. On the other hand, highly non-linear NNs are proficient in condensing video semantics into a compact representation. The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved w.r.t. the coding procedure, which is spontaneously learned from unlabeled data in a self-supervised manner. The videos collaboratively decoded from two streams (codec and NN) are of rich semantics, as well as visually photo-realistic, empirically boosting several mainstream downstream video analysis task performances without any post-adaptation procedure. Furthermore, by introducing the attention mechanism and adaptive modeling scheme, the video semantic modeling ability of our approach is further enhanced. Fianlly, we build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach. All codes, data, and models will be open-sourced for facilitating future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
niuniu发布了新的文献求助20
刚刚
1秒前
fcyyc发布了新的文献求助10
1秒前
1秒前
17完成签到,获得积分20
2秒前
科研通AI6应助aaaa采纳,获得30
2秒前
小马甲应助胡图图采纳,获得30
2秒前
量子星尘发布了新的文献求助10
3秒前
CAESAR关注了科研通微信公众号
3秒前
3秒前
3秒前
3秒前
3秒前
科研小子完成签到,获得积分10
4秒前
4秒前
李健应助顺利的映天采纳,获得10
4秒前
七里香完成签到 ,获得积分10
4秒前
CodeCraft应助自觉紫安采纳,获得10
4秒前
慕木发布了新的文献求助10
4秒前
PPPPPP完成签到,获得积分10
5秒前
雾隐完成签到,获得积分10
5秒前
爱笑的访梦完成签到,获得积分10
6秒前
oy发布了新的文献求助10
6秒前
情怀应助友好的小鸽子采纳,获得10
7秒前
浮生发布了新的文献求助10
8秒前
大模型应助Marlo采纳,获得10
8秒前
大大哈哈发布了新的文献求助10
8秒前
aaabbb发布了新的文献求助10
8秒前
yexu完成签到,获得积分10
9秒前
JJJJJin发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
李健的小迷弟应助meng采纳,获得10
11秒前
SciGPT应助华仔采纳,获得10
12秒前
浮游应助Fantacy采纳,获得10
12秒前
结果诠释过往完成签到 ,获得积分10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407