Multisource Feature Embedding and Interaction Fusion Network for Coastal Wetland Classification With Hyperspectral and LiDAR Data

高光谱成像 遥感 激光雷达 特征(语言学) 传感器融合 融合 嵌入 计算机科学 人工智能 模式识别(心理学) 地质学 哲学 语言学
作者
Fangming Guo,Qiao Meng,Zhongwei Li,Guangbo Ren,Leiquan Wang,Jie Zhang,Renlin Xin,Yabin Hu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:35
标识
DOI:10.1109/tgrs.2024.3367960
摘要

With the development of earth observation technology, hyperspectral image (HSI) and light detection and ranging (LiDAR) data collaborative monitoring has shown great potential in the ecological protection and restoration of coastal wetlands. However, due to the different working principle adopted by the HSI sensor and LiDAR sensor, the data obtained by them has different distribution characteristics. The distribution difference limits the fusion of HSI and LiDAR data, bringing a great challenge for coastal wetland classification. To tackle this problem, a multi-source feature embedding and interaction fusion network is proposed for coastal wetland classification, named MsFE-IFN. First, the HSI and LiDAR data are embedded in the same feature space, where the feature distribution of multi-source remote sensing are aligned to alleviate data distribution differences. Second, the aligned HSI and LiDAR features interact information in channels and pixels, which is able to establish the relationship of spectral, elevation and geospatial. Third, the HSI and LiDAR feature are sent into the feature fusion network, in which the low-frequency residual is retained to enrich intra-class features. Finally, the fused feature is applied for final class prediction. Experiments conducted on three coastal wetland HSI-LiDAR datasets created by ourselves demonstrate the superiority of the proposed MsFE-IFN for coastal wetland classification. The codes will be available from the website:https://github.com/bigshot-g/IEEE_TGRS_MsFE-IFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王梓磬完成签到,获得积分10
刚刚
刚刚
852应助Mona采纳,获得10
刚刚
刚刚
wanci应助刘能采纳,获得10
刚刚
1秒前
科研通AI6应助kyfg采纳,获得10
1秒前
shanshan__完成签到,获得积分10
1秒前
生动的沧海完成签到,获得积分10
1秒前
田様应助coups哒嘟采纳,获得10
1秒前
小二郎应助Mody采纳,获得10
1秒前
2秒前
2秒前
酷波er应助漂亮的千万采纳,获得10
2秒前
wjy完成签到 ,获得积分10
2秒前
3秒前
coooos发布了新的文献求助20
3秒前
星野完成签到 ,获得积分10
3秒前
宿雨完成签到,获得积分10
4秒前
4秒前
5秒前
ccm应助lulu采纳,获得10
5秒前
脑洞疼应助难过的元容采纳,获得10
5秒前
隐形曼青应助KARRY采纳,获得10
5秒前
小猴子应助一个小水滴采纳,获得50
5秒前
尕辉发布了新的文献求助10
6秒前
6秒前
浮游应助拼搏的笑采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
独特的谷雪完成签到,获得积分10
7秒前
李健应助沉默黑猫采纳,获得10
7秒前
慧海拾穗发布了新的文献求助30
7秒前
7秒前
开心水风发布了新的文献求助10
7秒前
繁荣的寻芹完成签到,获得积分10
7秒前
8秒前
8秒前
思源应助印第安老斑鸠采纳,获得10
8秒前
8秒前
跳跳熊完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055