Multisource Feature Embedding and Interaction Fusion Network for Coastal Wetland Classification With Hyperspectral and LiDAR Data

高光谱成像 遥感 激光雷达 特征(语言学) 传感器融合 融合 嵌入 计算机科学 人工智能 模式识别(心理学) 地质学 哲学 语言学
作者
Fangming Guo,Qiao Meng,Zhongwei Li,Guangbo Ren,Leiquan Wang,Jie Zhang,Rongyu Xin,Yabin Hu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:4
标识
DOI:10.1109/tgrs.2024.3367960
摘要

With the development of earth observation technology, hyperspectral image (HSI) and light detection and ranging (LiDAR) data collaborative monitoring has shown great potential in the ecological protection and restoration of coastal wetlands. However, due to the different working principle adopted by the HSI sensor and LiDAR sensor, the data obtained by them has different distribution characteristics. The distribution difference limits the fusion of HSI and LiDAR data, bringing a great challenge for coastal wetland classification. To tackle this problem, a multi-source feature embedding and interaction fusion network is proposed for coastal wetland classification, named MsFE-IFN. First, the HSI and LiDAR data are embedded in the same feature space, where the feature distribution of multi-source remote sensing are aligned to alleviate data distribution differences. Second, the aligned HSI and LiDAR features interact information in channels and pixels, which is able to establish the relationship of spectral, elevation and geospatial. Third, the HSI and LiDAR feature are sent into the feature fusion network, in which the low-frequency residual is retained to enrich intra-class features. Finally, the fused feature is applied for final class prediction. Experiments conducted on three coastal wetland HSI-LiDAR datasets created by ourselves demonstrate the superiority of the proposed MsFE-IFN for coastal wetland classification. The codes will be available from the website:https://github.com/bigshot-g/IEEE_TGRS_MsFE-IFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
摸鱼摸鱼摸摸鱼完成签到,获得积分10
2秒前
xiaoputaor完成签到 ,获得积分10
3秒前
万能图书馆应助yana采纳,获得20
4秒前
兽医12138完成签到 ,获得积分10
4秒前
苏苏发布了新的文献求助10
4秒前
烯灯完成签到,获得积分10
5秒前
慕青应助哈哈采纳,获得10
5秒前
Ava应助朴素的鸡采纳,获得10
5秒前
852应助沧海泪采纳,获得10
5秒前
tao发布了新的文献求助10
5秒前
苏兴龙发布了新的文献求助10
5秒前
爱思考的我完成签到,获得积分10
6秒前
zzznznnn发布了新的文献求助10
6秒前
科研通AI5应助junzilan采纳,获得10
7秒前
7秒前
7秒前
田様应助SCI采纳,获得10
8秒前
无花果应助帅气惜霜采纳,获得10
9秒前
Qiuju发布了新的文献求助10
9秒前
Z小姐发布了新的文献求助10
10秒前
义气发卡完成签到 ,获得积分10
11秒前
11秒前
11秒前
三十八年夏至完成签到 ,获得积分10
12秒前
佳佳减减发布了新的文献求助10
12秒前
拾柒完成签到 ,获得积分10
12秒前
zqfxc发布了新的文献求助10
13秒前
13秒前
SYLH应助FartKing采纳,获得10
13秒前
该睡觉啦发布了新的文献求助20
14秒前
陈梦雨完成签到 ,获得积分10
15秒前
gg完成签到,获得积分10
15秒前
瞬间完成签到 ,获得积分10
15秒前
Hello paper完成签到,获得积分10
16秒前
16秒前
demonox完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794