Multisource Feature Embedding and Interaction Fusion Network for Coastal Wetland Classification With Hyperspectral and LiDAR Data

高光谱成像 遥感 激光雷达 特征(语言学) 传感器融合 融合 嵌入 计算机科学 人工智能 模式识别(心理学) 地质学 哲学 语言学
作者
Fangming Guo,Qiao Meng,Zhongwei Li,Guangbo Ren,Leiquan Wang,Jie Zhang,Renlin Xin,Yabin Hu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:8
标识
DOI:10.1109/tgrs.2024.3367960
摘要

With the development of earth observation technology, hyperspectral image (HSI) and light detection and ranging (LiDAR) data collaborative monitoring has shown great potential in the ecological protection and restoration of coastal wetlands. However, due to the different working principle adopted by the HSI sensor and LiDAR sensor, the data obtained by them has different distribution characteristics. The distribution difference limits the fusion of HSI and LiDAR data, bringing a great challenge for coastal wetland classification. To tackle this problem, a multi-source feature embedding and interaction fusion network is proposed for coastal wetland classification, named MsFE-IFN. First, the HSI and LiDAR data are embedded in the same feature space, where the feature distribution of multi-source remote sensing are aligned to alleviate data distribution differences. Second, the aligned HSI and LiDAR features interact information in channels and pixels, which is able to establish the relationship of spectral, elevation and geospatial. Third, the HSI and LiDAR feature are sent into the feature fusion network, in which the low-frequency residual is retained to enrich intra-class features. Finally, the fused feature is applied for final class prediction. Experiments conducted on three coastal wetland HSI-LiDAR datasets created by ourselves demonstrate the superiority of the proposed MsFE-IFN for coastal wetland classification. The codes will be available from the website:https://github.com/bigshot-g/IEEE_TGRS_MsFE-IFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助dllz采纳,获得10
刚刚
天天快乐应助觅海采纳,获得10
2秒前
3秒前
LHX关注了科研通微信公众号
3秒前
法官大人完成签到 ,获得积分20
5秒前
潇洒飞丹发布了新的文献求助10
6秒前
酷波er应助Aline采纳,获得10
7秒前
7秒前
科目三应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
Hayat应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
火星上牛青完成签到,获得积分10
10秒前
11秒前
11秒前
无花果应助小文cremen采纳,获得10
12秒前
爱打工的帕鲁完成签到 ,获得积分10
12秒前
13秒前
卿欣完成签到 ,获得积分10
13秒前
13秒前
积极荆发布了新的文献求助10
13秒前
LHX发布了新的文献求助10
14秒前
JamesPei应助Iwan采纳,获得10
16秒前
16秒前
光亮笑柳完成签到,获得积分10
16秒前
16秒前
无花果应助科研仔111采纳,获得10
17秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824