Dosimetric predictors of radiation pneumonitis in patients with prior immunotherapy exposure: A multi-institutional analysis

医学 肺癌 放射治疗 背景(考古学) 肺炎 逻辑回归 接收机工作特性 人口 内科学 肿瘤科 核医学 放射科 生物 环境卫生 古生物学
作者
Jianping Bi,Rui Meng,Dongqin Yang,Ying Li,Jun Cai,Li Zhang,Jing Qian,Xudong Xue,Shiqi Hu,Zilong Yuan,Vivek Verma,Nan Bi,Guang Han
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:190: 110040-110040 被引量:2
标识
DOI:10.1016/j.radonc.2023.110040
摘要

Background and purpose Combining immune checkpoint inhibitors (ICIs) and thoracic radiotherapy (TRT) may magnify the radiation pneumonitis (RP) risk. Dosimetric parameters can predict RP, but dosimetric data in context of immunotherapy are very scarce. To address this knowledge gap, we performed a large multicenter investigation to identify dosimetric predictors of RP in this under-studied population. Materials and methods All lung cancer patients from five institutions who underwent conventionally-fractionated thoracic intensity-modulated radiotherapy with prior ICI receipt were retrospectively compiled. RP was defined per CTCAE v5.0. Statistics utilized logistic regression modeling and receiver operating characteristic (ROC) analysis. Results The vast majority of the 192 patients (median follow-up 14.7 months) had non-small cell lung cancer, received PD-1 inhibitors, and did not receive concurrent systemic therapy with TRT. Grades 1–5 RP occurred in 21.9%, 25.0%, 8.3%, 1.6%, and 1.0%, respectively. The mean MLD for patients with grades 1–5 RP was 10.7, 11.6, 12.6, 14.7, and 12.8 Gy, respectively. On multivariable analysis, tumor location and mean lung dose (MLD) significantly predicted for any-grade and grade ≥ 2 pneumonitis. Only MLD significantly predicted for grade ≥ 3 RP. ROC analysis was able to pictorially model RP risk probabilities for a variety of MLD thresholds, which can be an assistive tool during TRT treatment planning. Conclusion This study, by far the largest to date of dosimetric predictors of RP in the immunotherapy era, illustrates that MLD is the most critical dose-volume parameter influencing RP risk. These data may provide a basis for revising lung dose constraints in efforts to better prevent RP in this rapidly expanding ICI/TRT population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱的乐枫完成签到,获得积分10
刚刚
刚刚
金润完成签到,获得积分10
1秒前
ZZ完成签到,获得积分10
1秒前
AteeqBaloch发布了新的文献求助10
2秒前
PaulLao完成签到,获得积分10
2秒前
2秒前
fleee发布了新的文献求助10
2秒前
2秒前
3秒前
Luyao发布了新的文献求助10
3秒前
海派Hi完成签到 ,获得积分10
3秒前
依依完成签到 ,获得积分10
4秒前
李健的小迷弟应助库外采纳,获得10
4秒前
yi完成签到 ,获得积分10
4秒前
kbj发布了新的文献求助10
4秒前
6秒前
佳言2009完成签到,获得积分10
7秒前
汉堡包应助漂亮的初蓝采纳,获得10
7秒前
hohokuz发布了新的文献求助10
8秒前
莫里完成签到,获得积分10
8秒前
zxz发布了新的文献求助10
8秒前
Luyao完成签到,获得积分10
9秒前
9秒前
9秒前
马甲完成签到,获得积分10
9秒前
科研通AI5应助xdf采纳,获得10
9秒前
周周完成签到,获得积分10
9秒前
Holybot完成签到,获得积分10
9秒前
11秒前
只道寻常完成签到,获得积分10
11秒前
fleee完成签到,获得积分10
11秒前
swsx1317发布了新的文献求助10
11秒前
12秒前
雪白涵山完成签到,获得积分20
12秒前
liao完成签到 ,获得积分10
12秒前
hu970发布了新的文献求助30
12秒前
科研小白发布了新的文献求助20
13秒前
SciGPT应助白小白采纳,获得10
13秒前
shuxi完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762