亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Information Gap Narrowing for Point Cloud Few-shot Segmentation

点云 计算机科学 对象(语法) 分割 集合(抽象数据类型) 特征(语言学) 推论 任务(项目管理) 点(几何) 数据挖掘 数据集 模式识别(心理学) 人工智能 情报检索 数学 哲学 语言学 几何学 管理 经济 程序设计语言
作者
Guanyu Zhu,Yong Zhou,Rui Yao,Hancheng Zhu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2023.3338144
摘要

Point-by-point labeling of point clouds is a very costly task. Previous meta-learning-based few-shot methods predict categories by calculating the distance between unlabeled data (query set) and the prototype calculated by a few of data with the label (support set), which can reduce the dependence of point cloud segmentation algorithms on large amounts of labeled data. But it ignores the category information gap caused by object diversity between the two types of data and forcing information transfer is ineffective. To address this issue, we propose a co-occurrent object mining module for mining co-occurring object information from support and query sets. Specifically, the capture of co-occurrent information is used to activate the feature that co-occurs between the support and query set in the high-dimensional feature space so that the prototype generated by computing the mean of support features is more similar to the query set. By reducing the object diversity within the same category, the information gap problem is gradually improved. In addition, we propose a point-attention module to refine the support set features before mining co-occurrent features. It can be widely embedded in the point cloud backbone network. The experimental results on two semantic segmentation datasets demonstrate that our method obtains an average 19.43% lead over the state-of-the-art methods in 4 different few-shot tasks, while inference is around 45 times faster.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
mzr完成签到,获得积分20
4秒前
阿灵完成签到 ,获得积分10
5秒前
慕青应助wf采纳,获得10
5秒前
落寞的若菱完成签到,获得积分20
8秒前
14秒前
16秒前
义气幼珊完成签到 ,获得积分10
16秒前
17秒前
ceeray23应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
20秒前
莫休完成签到 ,获得积分10
25秒前
壳聚糖座下第一牛马完成签到,获得积分20
26秒前
111112完成签到,获得积分10
28秒前
29秒前
34秒前
34秒前
1111完成签到 ,获得积分10
37秒前
英姑应助NZH采纳,获得10
38秒前
Backto1998发布了新的文献求助10
38秒前
44秒前
SciGPT应助zhangqin采纳,获得10
44秒前
47秒前
ma完成签到,获得积分10
49秒前
49秒前
Ava应助好文章快快来采纳,获得10
52秒前
诚心擎苍发布了新的文献求助10
52秒前
55秒前
ma发布了新的文献求助10
56秒前
58秒前
冷冷完成签到 ,获得积分10
1分钟前
Jasper应助小小采纳,获得10
1分钟前
无私的梦凡完成签到,获得积分10
1分钟前
wangjuan完成签到,获得积分10
1分钟前
1分钟前
小耗子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387