亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Information Gap Narrowing for Point Cloud Few-shot Segmentation

点云 计算机科学 对象(语法) 分割 集合(抽象数据类型) 特征(语言学) 推论 任务(项目管理) 点(几何) 数据挖掘 数据集 模式识别(心理学) 人工智能 情报检索 数学 哲学 语言学 几何学 管理 经济 程序设计语言
作者
Guanyu Zhu,Yong Zhou,Rui Yao,Hancheng Zhu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2023.3338144
摘要

Point-by-point labeling of point clouds is a very costly task. Previous meta-learning-based few-shot methods predict categories by calculating the distance between unlabeled data (query set) and the prototype calculated by a few of data with the label (support set), which can reduce the dependence of point cloud segmentation algorithms on large amounts of labeled data. But it ignores the category information gap caused by object diversity between the two types of data and forcing information transfer is ineffective. To address this issue, we propose a co-occurrent object mining module for mining co-occurring object information from support and query sets. Specifically, the capture of co-occurrent information is used to activate the feature that co-occurs between the support and query set in the high-dimensional feature space so that the prototype generated by computing the mean of support features is more similar to the query set. By reducing the object diversity within the same category, the information gap problem is gradually improved. In addition, we propose a point-attention module to refine the support set features before mining co-occurrent features. It can be widely embedded in the point cloud backbone network. The experimental results on two semantic segmentation datasets demonstrate that our method obtains an average 19.43% lead over the state-of-the-art methods in 4 different few-shot tasks, while inference is around 45 times faster.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑傲完成签到,获得积分10
7秒前
7秒前
8秒前
zhangxiaoqing发布了新的文献求助10
12秒前
18秒前
达西苏发布了新的文献求助10
22秒前
达西苏完成签到,获得积分10
51秒前
激动的似狮完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小青椒应助霸气面包采纳,获得10
1分钟前
pups发布了新的文献求助10
1分钟前
1分钟前
wmm完成签到,获得积分10
1分钟前
Jasper应助pups采纳,获得20
2分钟前
Wei发布了新的文献求助20
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
不如看海完成签到 ,获得积分10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助信陵君无忌采纳,获得10
2分钟前
原子超人完成签到,获得积分10
3分钟前
wanci应助ma采纳,获得10
3分钟前
3分钟前
ma发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
支雨泽完成签到,获得积分10
4分钟前
4分钟前
桐桐应助科研通管家采纳,获得10
4分钟前
4分钟前
turtle完成签到 ,获得积分10
4分钟前
曦颜发布了新的文献求助10
5分钟前
6分钟前
温不胜的破木吉他完成签到 ,获得积分10
7分钟前
7分钟前
kukudou2发布了新的文献求助10
7分钟前
我是老大应助信陵君无忌采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671275
求助须知:如何正确求助?哪些是违规求助? 4913655
关于积分的说明 15134379
捐赠科研通 4830066
什么是DOI,文献DOI怎么找? 2586738
邀请新用户注册赠送积分活动 1540332
关于科研通互助平台的介绍 1498523