A Hybrid Approach Using Convolution and Transformer for Mongolian Ancient Documents Recognition

计算机科学 变压器 卷积神经网络 人工智能 提取器 自然语言处理 特征(语言学) 模式识别(心理学) 词(群论) 特征提取 语言学 工程类 哲学 电压 电气工程 工艺工程
作者
Shiwen Sun,Hongxi Wei,Yiming Wang
出处
期刊:Communications in computer and information science 卷期号:: 165-176 被引量:1
标识
DOI:10.1007/978-981-99-8178-6_13
摘要

Mongolian ancient documents are an indispensable source for studying Mongolian traditional culture. To thoroughly explore and effectively utilize these ancient documents, conducting a comprehensive study on Mongolian ancient document words recognition is essential. In order to better recognize the word images in Mongolian ancient documents, this paper proposes an approach that combines convolutional neural networks with Transformer models. The approach used in this paper takes word images as the input for the model. After passing through a feature extractor composed of convolutional neural networks, the extracted features are fed into a Transformer model for prediction. Finally, the corresponding recognition results of the word images are obtained. Due to the common existence of imbalanced distribution of character classes in recognition tasks, models often tend to excessively focus on common characters while neglecting rare characters. Our proposed approach integrates focal loss to enhance the model's attention towards rare characters, thereby improving the overall recognition performance of the model for all characters. After training, the model is capable of rapidly and efficiently performing end-to-end recognition of words in Mongolian ancient documents. The experimental results indicate that our proposed approach outperforms existing methods for word recognition in Mongolian ancient documents, effectively improving the performance of Mongolian ancient document words recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一心扑在搞学术完成签到,获得积分10
刚刚
PSQ发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI6应助范春艳采纳,获得10
2秒前
彭于晏应助魔幻灵槐采纳,获得10
3秒前
星辰大海应助ding采纳,获得10
3秒前
Ccccc发布了新的文献求助30
3秒前
天天快乐应助生动雁荷采纳,获得10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
Stella应助kkk采纳,获得10
5秒前
Orange应助xtlx采纳,获得10
6秒前
栀蓝完成签到,获得积分10
6秒前
shancui发布了新的文献求助10
6秒前
6秒前
6秒前
韩小小发布了新的文献求助10
6秒前
7秒前
7秒前
dagongren完成签到,获得积分10
7秒前
naych发布了新的文献求助10
7秒前
庾幻儿完成签到,获得积分10
7秒前
小二郎应助赵楠采纳,获得10
7秒前
彭于晏应助wait采纳,获得10
7秒前
7秒前
高高珠发布了新的文献求助10
8秒前
善学以致用应助积极寻梅采纳,获得10
9秒前
达进发布了新的文献求助10
9秒前
zz发布了新的文献求助10
9秒前
小乐完成签到 ,获得积分10
9秒前
9秒前
科研通AI6应助123采纳,获得10
10秒前
Drake完成签到,获得积分10
10秒前
10秒前
小晓小晓发布了新的文献求助20
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582126
求助须知:如何正确求助?哪些是违规求助? 4666270
关于积分的说明 14761714
捐赠科研通 4608242
什么是DOI,文献DOI怎么找? 2528583
邀请新用户注册赠送积分活动 1497888
关于科研通互助平台的介绍 1466665