亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hybrid Approach Using Convolution and Transformer for Mongolian Ancient Documents Recognition

计算机科学 变压器 卷积神经网络 人工智能 提取器 自然语言处理 特征(语言学) 模式识别(心理学) 词(群论) 特征提取 语言学 工程类 哲学 电压 电气工程 工艺工程
作者
Shiwen Sun,Hongxi Wei,Yiming Wang
出处
期刊:Communications in computer and information science 卷期号:: 165-176 被引量:1
标识
DOI:10.1007/978-981-99-8178-6_13
摘要

Mongolian ancient documents are an indispensable source for studying Mongolian traditional culture. To thoroughly explore and effectively utilize these ancient documents, conducting a comprehensive study on Mongolian ancient document words recognition is essential. In order to better recognize the word images in Mongolian ancient documents, this paper proposes an approach that combines convolutional neural networks with Transformer models. The approach used in this paper takes word images as the input for the model. After passing through a feature extractor composed of convolutional neural networks, the extracted features are fed into a Transformer model for prediction. Finally, the corresponding recognition results of the word images are obtained. Due to the common existence of imbalanced distribution of character classes in recognition tasks, models often tend to excessively focus on common characters while neglecting rare characters. Our proposed approach integrates focal loss to enhance the model's attention towards rare characters, thereby improving the overall recognition performance of the model for all characters. After training, the model is capable of rapidly and efficiently performing end-to-end recognition of words in Mongolian ancient documents. The experimental results indicate that our proposed approach outperforms existing methods for word recognition in Mongolian ancient documents, effectively improving the performance of Mongolian ancient document words recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
James发布了新的文献求助10
9秒前
Pluto发布了新的文献求助10
13秒前
17秒前
彭婉怡yyyy完成签到,获得积分10
22秒前
CodeCraft应助LLYNL采纳,获得10
23秒前
文静听南完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
28秒前
万能图书馆应助刘海清采纳,获得30
28秒前
34秒前
39秒前
46秒前
小白菜完成签到,获得积分10
52秒前
1分钟前
1分钟前
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
Ldq发布了新的文献求助10
1分钟前
搜集达人应助个性的亦云采纳,获得10
1分钟前
Tumumu完成签到,获得积分10
1分钟前
1分钟前
刘海清发布了新的文献求助30
1分钟前
susu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
一点通发布了新的文献求助10
1分钟前
susu发布了新的文献求助30
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482258
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388800
捐赠科研通 4512190
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1458988
关于科研通互助平台的介绍 1432375