清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automated Segmentation of Ablated Lesions Using Deep Convolutional Neural Networks: A Basis for Response Assessment Following Laser Interstitial Thermal Therapy

卷积神经网络 分割 人工智能 激光器 基础(线性代数) 计算机科学 模式识别(心理学) 材料科学 光学 物理 数学 几何学
作者
Aden Haskell-Mendoza,Ellery Reason,Ariel T Gonzalez,Joshua Jackson,Eric W. Sankey,Ethan Srinivasan,James E. Herndon,Peter E. Fecci,Evan Calabrese
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1152-1162 被引量:3
标识
DOI:10.1093/neuonc/noad261
摘要

Abstract Background Laser interstitial thermal therapy (LITT) of intracranial tumors or radiation necrosis enables tissue diagnosis, cytoreduction, and rapid return to systemic therapies. Ablated tissue remains in situ, resulting in characteristic post-LITT edema associated with transient clinical worsening and complicating post-LITT response assessment. Methods All patients receiving LITT at a single center for tumors or radiation necrosis from 2015 to 2023 with ≥9 months of MRI follow-up were included. An nnU-Net segmentation model was trained to automatically segment contrast-enhancing lesion volume (CeLV) of LITT-treated lesions on T1-weighted images. Response assessment was performed using volumetric measurements. Results Three hundred and eighty four unique MRI exams of 61 LITT-treated lesions and 6 control cases of medically managed radiation necrosis were analyzed. Automated segmentation was accurate in 367/384 (95.6%) images. CeLV increased to a median of 68.3% (IQR 35.1–109.2%) from baseline at 1–3 months from LITT (P = 0.0012) and returned to baseline thereafter. Overall survival (OS) for LITT-treated patients was 39.1 (9.2–93.4) months. Lesion expansion above 40% from volumetric nadir or baseline was considered volumetric progression. Twenty-one of 56 (37.5%) patients experienced progression for a volumetric progression-free survival of 21.4 (6.0–93.4) months. Patients with volumetric progression had worse OS (17.3 vs 62.1 months, P = 0.0015). Conclusions Post-LITT CeLV expansion is quantifiable and resolves within 6 months of LITT. Development of response assessment criteria for LITT-treated lesions is feasible and should be considered for clinical trials. Automated lesion segmentation could speed the adoption of volumetric response criteria in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
5秒前
7秒前
wrl2023发布了新的文献求助10
10秒前
sqc发布了新的文献求助10
12秒前
wrl2023完成签到,获得积分10
23秒前
房天川完成签到 ,获得积分10
27秒前
临兵者完成签到 ,获得积分10
28秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
开放青旋应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
1分钟前
1分钟前
勤奋流沙完成签到 ,获得积分10
1分钟前
朴素海亦完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
小白菜完成签到,获得积分10
2分钟前
2分钟前
袁青寒完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
TEMPO发布了新的文献求助10
3分钟前
魔术师完成签到 ,获得积分10
3分钟前
3分钟前
瞿寒完成签到,获得积分10
3分钟前
快乐的笑阳完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
香蕉觅云应助huenguyenvan采纳,获得10
4分钟前
李健应助阿萨卡先生采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210