Automated Segmentation of Ablated Lesions Using Deep Convolutional Neural Networks: A Basis for Response Assessment Following Laser Interstitial Thermal Therapy

卷积神经网络 分割 人工智能 激光器 基础(线性代数) 计算机科学 模式识别(心理学) 材料科学 光学 物理 数学 几何学
作者
Aden Haskell-Mendoza,Ellery Reason,Ariel T Gonzalez,Joshua Jackson,Eric W. Sankey,Ethan Srinivasan,James E. Herndon,Peter E. Fecci,Evan Calabrese
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1152-1162 被引量:3
标识
DOI:10.1093/neuonc/noad261
摘要

Abstract Background Laser interstitial thermal therapy (LITT) of intracranial tumors or radiation necrosis enables tissue diagnosis, cytoreduction, and rapid return to systemic therapies. Ablated tissue remains in situ, resulting in characteristic post-LITT edema associated with transient clinical worsening and complicating post-LITT response assessment. Methods All patients receiving LITT at a single center for tumors or radiation necrosis from 2015 to 2023 with ≥9 months of MRI follow-up were included. An nnU-Net segmentation model was trained to automatically segment contrast-enhancing lesion volume (CeLV) of LITT-treated lesions on T1-weighted images. Response assessment was performed using volumetric measurements. Results Three hundred and eighty four unique MRI exams of 61 LITT-treated lesions and 6 control cases of medically managed radiation necrosis were analyzed. Automated segmentation was accurate in 367/384 (95.6%) images. CeLV increased to a median of 68.3% (IQR 35.1–109.2%) from baseline at 1–3 months from LITT (P = 0.0012) and returned to baseline thereafter. Overall survival (OS) for LITT-treated patients was 39.1 (9.2–93.4) months. Lesion expansion above 40% from volumetric nadir or baseline was considered volumetric progression. Twenty-one of 56 (37.5%) patients experienced progression for a volumetric progression-free survival of 21.4 (6.0–93.4) months. Patients with volumetric progression had worse OS (17.3 vs 62.1 months, P = 0.0015). Conclusions Post-LITT CeLV expansion is quantifiable and resolves within 6 months of LITT. Development of response assessment criteria for LITT-treated lesions is feasible and should be considered for clinical trials. Automated lesion segmentation could speed the adoption of volumetric response criteria in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qinxiang发布了新的文献求助30
刚刚
哟呵大鱼完成签到,获得积分10
刚刚
CQ关注了科研通微信公众号
1秒前
1秒前
勤勤发布了新的文献求助10
1秒前
lejunia完成签到,获得积分10
1秒前
2秒前
3秒前
量子星尘发布了新的文献求助50
4秒前
nihau完成签到,获得积分20
4秒前
Aaron关注了科研通微信公众号
5秒前
6秒前
糖宝发布了新的文献求助10
6秒前
oyfff发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
Lingtem发布了新的文献求助10
8秒前
霞强发布了新的文献求助10
8秒前
香蕉觅云应助Ffffa采纳,获得10
9秒前
9秒前
9秒前
魏源关注了科研通微信公众号
10秒前
风趣雪一完成签到,获得积分10
10秒前
阿杰发布了新的文献求助10
11秒前
12秒前
11完成签到 ,获得积分0
12秒前
尊敬的便当完成签到,获得积分10
12秒前
oyfff完成签到,获得积分10
14秒前
14秒前
可靠冥幽发布了新的文献求助10
15秒前
xxxidgkris发布了新的文献求助10
15秒前
15秒前
张雨兴完成签到,获得积分10
15秒前
su发布了新的文献求助10
16秒前
16秒前
哟呵大鱼发布了新的文献求助10
16秒前
斯文败类应助跳跃的语雪采纳,获得10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061155
求助须知:如何正确求助?哪些是违规求助? 4285295
关于积分的说明 13353883
捐赠科研通 4103069
什么是DOI,文献DOI怎么找? 2246464
邀请新用户注册赠送积分活动 1252142
关于科研通互助平台的介绍 1182988