亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Segmentation of Ablated Lesions Using Deep Convolutional Neural Networks: A Basis for Response Assessment Following Laser Interstitial Thermal Therapy

卷积神经网络 分割 人工智能 激光器 基础(线性代数) 计算机科学 模式识别(心理学) 材料科学 光学 物理 数学 几何学
作者
Aden Haskell-Mendoza,Ellery Reason,Ariel T Gonzalez,Joshua Jackson,Eric W. Sankey,Ethan Srinivasan,James E. Herndon,Peter E. Fecci,Evan Calabrese
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1152-1162 被引量:3
标识
DOI:10.1093/neuonc/noad261
摘要

Abstract Background Laser interstitial thermal therapy (LITT) of intracranial tumors or radiation necrosis enables tissue diagnosis, cytoreduction, and rapid return to systemic therapies. Ablated tissue remains in situ, resulting in characteristic post-LITT edema associated with transient clinical worsening and complicating post-LITT response assessment. Methods All patients receiving LITT at a single center for tumors or radiation necrosis from 2015 to 2023 with ≥9 months of MRI follow-up were included. An nnU-Net segmentation model was trained to automatically segment contrast-enhancing lesion volume (CeLV) of LITT-treated lesions on T1-weighted images. Response assessment was performed using volumetric measurements. Results Three hundred and eighty four unique MRI exams of 61 LITT-treated lesions and 6 control cases of medically managed radiation necrosis were analyzed. Automated segmentation was accurate in 367/384 (95.6%) images. CeLV increased to a median of 68.3% (IQR 35.1–109.2%) from baseline at 1–3 months from LITT (P = 0.0012) and returned to baseline thereafter. Overall survival (OS) for LITT-treated patients was 39.1 (9.2–93.4) months. Lesion expansion above 40% from volumetric nadir or baseline was considered volumetric progression. Twenty-one of 56 (37.5%) patients experienced progression for a volumetric progression-free survival of 21.4 (6.0–93.4) months. Patients with volumetric progression had worse OS (17.3 vs 62.1 months, P = 0.0015). Conclusions Post-LITT CeLV expansion is quantifiable and resolves within 6 months of LITT. Development of response assessment criteria for LITT-treated lesions is feasible and should be considered for clinical trials. Automated lesion segmentation could speed the adoption of volumetric response criteria in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
阿里给阿里的求助进行了留言
7秒前
小透明发布了新的文献求助10
8秒前
22秒前
SUNny发布了新的文献求助10
23秒前
33秒前
35秒前
量子星尘发布了新的文献求助10
47秒前
54秒前
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
1分钟前
等待安莲完成签到,获得积分10
1分钟前
完美世界应助等待安莲采纳,获得10
1分钟前
1分钟前
阿里完成签到,获得积分10
2分钟前
2分钟前
CC完成签到,获得积分10
2分钟前
2分钟前
2分钟前
东溟渔夫发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
等待安莲发布了新的文献求助10
3分钟前
笨笨的怜雪完成签到 ,获得积分10
3分钟前
科目三应助李佳怡采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
wodetaiyangLLL完成签到 ,获得积分10
4分钟前
4分钟前
MchemG应助TXZ06采纳,获得30
4分钟前
4分钟前
4分钟前
5分钟前
MchemG应助TXZ06采纳,获得30
5分钟前
5分钟前
5分钟前
简宁完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664480
求助须知:如何正确求助?哪些是违规求助? 4862708
关于积分的说明 15107835
捐赠科研通 4823085
什么是DOI,文献DOI怎么找? 2581925
邀请新用户注册赠送积分活动 1536045
关于科研通互助平台的介绍 1494449