Automated Segmentation of Ablated Lesions Using Deep Convolutional Neural Networks: A Basis for Response Assessment Following Laser Interstitial Thermal Therapy

卷积神经网络 分割 人工智能 激光器 基础(线性代数) 计算机科学 模式识别(心理学) 材料科学 光学 物理 数学 几何学
作者
Aden Haskell-Mendoza,Ellery Reason,Ariel T Gonzalez,Joshua Jackson,Eric W. Sankey,Ethan Srinivasan,James E. Herndon,Peter E. Fecci,Evan Calabrese
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (6): 1152-1162 被引量:3
标识
DOI:10.1093/neuonc/noad261
摘要

Abstract Background Laser interstitial thermal therapy (LITT) of intracranial tumors or radiation necrosis enables tissue diagnosis, cytoreduction, and rapid return to systemic therapies. Ablated tissue remains in situ, resulting in characteristic post-LITT edema associated with transient clinical worsening and complicating post-LITT response assessment. Methods All patients receiving LITT at a single center for tumors or radiation necrosis from 2015 to 2023 with ≥9 months of MRI follow-up were included. An nnU-Net segmentation model was trained to automatically segment contrast-enhancing lesion volume (CeLV) of LITT-treated lesions on T1-weighted images. Response assessment was performed using volumetric measurements. Results Three hundred and eighty four unique MRI exams of 61 LITT-treated lesions and 6 control cases of medically managed radiation necrosis were analyzed. Automated segmentation was accurate in 367/384 (95.6%) images. CeLV increased to a median of 68.3% (IQR 35.1–109.2%) from baseline at 1–3 months from LITT (P = 0.0012) and returned to baseline thereafter. Overall survival (OS) for LITT-treated patients was 39.1 (9.2–93.4) months. Lesion expansion above 40% from volumetric nadir or baseline was considered volumetric progression. Twenty-one of 56 (37.5%) patients experienced progression for a volumetric progression-free survival of 21.4 (6.0–93.4) months. Patients with volumetric progression had worse OS (17.3 vs 62.1 months, P = 0.0015). Conclusions Post-LITT CeLV expansion is quantifiable and resolves within 6 months of LITT. Development of response assessment criteria for LITT-treated lesions is feasible and should be considered for clinical trials. Automated lesion segmentation could speed the adoption of volumetric response criteria in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助fanatic采纳,获得10
1秒前
Dead Cells完成签到,获得积分10
1秒前
Ava应助袁睿韬采纳,获得10
1秒前
Oil发布了新的文献求助10
2秒前
MrD完成签到,获得积分10
3秒前
快乐小子发布了新的文献求助10
3秒前
3秒前
小土豆完成签到,获得积分10
3秒前
自觉梦菲发布了新的文献求助10
3秒前
iron发布了新的文献求助10
3秒前
田様应助辛勤的尔烟采纳,获得10
3秒前
FashionBoy应助宝宝烤面包采纳,获得10
4秒前
拾柒发布了新的文献求助10
4秒前
科目三应助冷酷三德采纳,获得10
4秒前
5秒前
萧萧应助xiaoxioayixi采纳,获得10
5秒前
CipherSage应助池鱼思故渊采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
北美意难忘完成签到,获得积分10
5秒前
5秒前
时间有泪1212完成签到 ,获得积分10
5秒前
6秒前
外向秋灵完成签到,获得积分10
6秒前
Mo完成签到,获得积分10
6秒前
陌陌完成签到,获得积分10
6秒前
Mandarine完成签到,获得积分10
6秒前
6秒前
大模型应助Patty采纳,获得10
6秒前
hahaha完成签到,获得积分10
8秒前
平凡中的限量版完成签到,获得积分10
8秒前
8秒前
半农应助梨花月采纳,获得10
8秒前
温柔的代曼完成签到,获得积分10
8秒前
雨点发布了新的文献求助10
8秒前
Hilda007应助刚睡醒采纳,获得10
9秒前
自觉梦菲完成签到,获得积分10
10秒前
AI完成签到,获得积分10
10秒前
务实的胡萝卜完成签到,获得积分10
10秒前
10秒前
吕万鹏发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006