Development of a Machine Learning Modeling Tool for Predicting Human Immunodeficiency Virus Incidence Using Public Health Data From a County in the Southern United States

人类免疫缺陷病毒(HIV) 公共卫生 入射(几何) 病毒学 环境卫生 数据科学 医学 计算机科学 护理部 物理 光学
作者
Carlos Saldana,Elizabeth Burkhardt,Alfred J. Pennisi,Kirsten Oliver,John Olmstead,David P. Holland,Jenna R. Gettings,Daniel E. Mauck,David Austin,Pascale Wortley,Karla Saldaña Ochoa
出处
期刊:Clinical Infectious Diseases [Oxford University Press]
卷期号:79 (3): 717-726 被引量:2
标识
DOI:10.1093/cid/ciae100
摘要

Abstract Background Advancements in machine learning (ML) have improved the accuracy of models that predict human immunodeficiency virus (HIV) incidence. These models have used electronic medical records and registries. We aim to broaden the application of these tools by using deidentified public health datasets for notifiable sexually transmitted infections (STIs) from a southern US county known for high HIV incidence. The goal is to assess the feasibility and accuracy of ML in predicting HIV incidence, which could inform and enhance public health interventions. Methods We analyzed 2 deidentified public health datasets from January 2010 to December 2021, focusing on notifiable STIs. Our process involved data processing and feature extraction, including sociodemographic factors, STI cases, and social vulnerability index (SVI) metrics. Various ML models were trained and evaluated for predicting HIV incidence using metrics such as accuracy, precision, recall, and F1 score. Results We included 85 224 individuals; 2027 (2.37%) were newly diagnosed with HIV during the study period. The ML models demonstrated high performance in predicting HIV incidence among males and females. Influential features for males included age at STI diagnosis, previous STI information, provider type, and SVI. For females, predictive features included age, ethnicity, previous STI information, overall SVI, and race. Conclusions The high accuracy of our ML models in predicting HIV incidence highlights the potential of using public health datasets for public health interventions such as tailored HIV testing and prevention. While these findings are promising, further research is needed to translate these models into practical public health applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大意的绿草完成签到,获得积分10
1秒前
8689发布了新的文献求助10
1秒前
FLY完成签到,获得积分10
1秒前
Chunlan完成签到,获得积分10
1秒前
1秒前
2秒前
Grace完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
大个应助飘逸的青雪采纳,获得10
4秒前
正午发布了新的文献求助10
5秒前
6秒前
淡然皮卡丘完成签到,获得积分10
6秒前
6秒前
pan关闭了pan文献求助
7秒前
静香发布了新的文献求助10
8秒前
8秒前
8秒前
慕青应助Anonymous采纳,获得10
8秒前
persi完成签到 ,获得积分10
9秒前
火星上白安完成签到,获得积分10
9秒前
9秒前
10秒前
Yummerwei发布了新的文献求助10
10秒前
11秒前
AKA学术混子完成签到,获得积分10
11秒前
樱桃味的火苗完成签到,获得积分10
11秒前
竹子发布了新的文献求助10
11秒前
bkagyin应助Goldfish采纳,获得10
11秒前
kangsynat完成签到 ,获得积分10
11秒前
12秒前
22发布了新的文献求助10
12秒前
12秒前
15759869988完成签到 ,获得积分10
13秒前
1GE完成签到,获得积分10
14秒前
15秒前
895_应助小洪俊熙采纳,获得10
15秒前
专注大米发布了新的文献求助10
16秒前
StH发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308145
求助须知:如何正确求助?哪些是违规求助? 2941687
关于积分的说明 8504876
捐赠科研通 2616322
什么是DOI,文献DOI怎么找? 1429586
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648793