Fe, N‐Inducing Interfacial Electron Redistribution in NiCo Spinel on Biomass‐Derived Carbon for Bi‐functional Oxygen Conversion

再分配(选举) 尖晶石 氧气 碳纤维 生物量(生态学) 化学 化学工程 材料科学 冶金 有机化学 生态学 生物 政治 复合数 政治学 法学 复合材料 工程类
作者
Yanyan Liu,Limin Zhou,Shuling Liu,Shuqi Li,Jingjing Zhou,Xin Li,Xiangmeng Chen,Kang Sun,Baojun Li,Jianchun Jiang,Huan Pang
出处
期刊:Angewandte Chemie [Wiley]
卷期号:136 (16) 被引量:8
标识
DOI:10.1002/ange.202319983
摘要

Abstract Herein, an interfacial electron redistribution is proposed to boost the activity of carbon‐supported spinel NiCo 2 O 4 catalyst toward oxygen conversion via Fe, N‐doping strategy. Fe‐doping into octahedron induces a redistribution of electrons between Co and Ni atoms on NiCo 1.8 Fe 0.2 O 4 @N‐carbon. The increased electron density of Co promotes the coordination of water to Co sites and further dissociation. The generation of proton from water improves the overall activity for the oxygen reduction reaction (ORR). The increased electron density of Ni facilitates the generation of oxygen vacancies. The Ni−V O −Fe structure accelerates the deprotonation of *OOH to improve the activity toward oxygen evolution reaction (OER). N‐doping modulates the electron density of carbon to form active sites for the adsorption and protonation of oxygen species. Fir wood‐derived carbon endows catalyst with an integral structure to enable outstanding electrocatalytic performance. The NiCo 1.8 Fe 0.2 O 4 @N‐carbon express high half‐wave potential up to 0.86 V in ORR and low overpotential of 270 mV at 10 mA cm −2 in OER. The zinc‐air batteries (ZABs) assembled with the as‐prepared catalyst achieve long‐term cycle stability (over 2000 cycles) with peak power density (180 mWcm −2 ). Fe, N‐doping strategy drives the catalysis of biomass‐derived carbon‐based catalysts to the highest level for the oxygen conversion in ZABs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fztnh发布了新的文献求助10
刚刚
无名花生完成签到 ,获得积分10
刚刚
2秒前
3秒前
3秒前
杜若完成签到,获得积分10
3秒前
3秒前
木森ab完成签到,获得积分20
5秒前
paul发布了新的文献求助10
6秒前
7秒前
MEME发布了新的文献求助10
10秒前
10秒前
情怀应助LSH970829采纳,获得10
10秒前
CHINA_C13发布了新的文献求助10
13秒前
Mars发布了新的文献求助10
14秒前
哈哈哈完成签到,获得积分10
14秒前
玛卡巴卡应助平常的毛豆采纳,获得100
15秒前
默默的青旋完成签到,获得积分10
16秒前
19秒前
搜集达人应助淡淡采白采纳,获得10
19秒前
高高代珊完成签到 ,获得积分10
20秒前
gmc发布了新的文献求助10
21秒前
21秒前
22秒前
善学以致用应助Mian采纳,获得10
22秒前
学科共进发布了新的文献求助60
23秒前
LWJ完成签到 ,获得积分10
23秒前
23秒前
缓慢的糖豆完成签到,获得积分10
24秒前
阉太狼完成签到,获得积分10
24秒前
25秒前
soory完成签到,获得积分10
26秒前
任性的傲柏完成签到,获得积分10
26秒前
lwk205完成签到,获得积分0
26秒前
27秒前
一一完成签到,获得积分10
27秒前
27秒前
27秒前
高中生完成签到,获得积分10
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824