PT-Net: Pyramid Transformer Network for Feature Matching Learning

变压器 计算机科学 棱锥(几何) 匹配(统计) 人工智能 模式识别(心理学) 工程类 电气工程 电压 数学 统计 几何学
作者
Zhepeng Gong,Guobao Xiao,Ziwei Shi,Shiping Wang,Riqing Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:1
标识
DOI:10.1109/tim.2024.3369132
摘要

In this article, we propose a novel pyramid transformer network (PT-Net) for feature matching problems. Recent studies have used the dense motion field to transform unordered correspondences into ordered motion vectors and have used convolutional neural networks (CNNs) to extract deep features. However, the limited receptive field of CNNs restricts the ability of the network to capture global information within the motion field. To tackle this limitation, we devise a pyramid transformer (PT) block to enhance the models ability to extract both local and global information from the motion field, which fuses multiscale motion field information by constructing a pyramid-structured motion field. Furthermore, to alleviate the high memory demands of spatial attention in the transformer, we introduce dilated sparse attention (DSA), a novel attention block that reduces the computational difficulty of multihead self-attention (MHSA) through regular interval sampling and deconvolution operations and focuses on the essential regions to establish long-range dependencies between the correct motion vectors. The proposed PT-Net is effective in inferring the probabilities of correspondences belonging to either inliers or outliers, while simultaneously estimating the essential matrix. Extensive experiments demonstrate that PT-Net network outperforms state-of-the-art methods for outlier removal tasks and camera pose estimation on different datasets, including YFCC100M and SUN3D. The code is available at https://github.com/gongzhepeng/PT-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鸭嗦饼干发布了新的文献求助10
1秒前
zzh发布了新的文献求助10
1秒前
1秒前
后来发布了新的文献求助10
1秒前
mtfx发布了新的文献求助10
2秒前
尊敬柚子发布了新的文献求助10
3秒前
小康子完成签到,获得积分10
3秒前
汉堡包应助fanjinzhu采纳,获得10
4秒前
4秒前
CodeCraft应助鸭嗦饼干采纳,获得10
4秒前
莫星晨完成签到,获得积分20
5秒前
852应助一颗西柚采纳,获得10
5秒前
zyq发布了新的文献求助10
5秒前
CC应助汪汪队立大功采纳,获得10
5秒前
6秒前
星夜发布了新的文献求助10
7秒前
打打应助比巴卜采纳,获得10
7秒前
7秒前
黄小渣发布了新的文献求助10
8秒前
8秒前
8秒前
慕青应助能干的茗采纳,获得10
10秒前
ghost完成签到,获得积分10
10秒前
10秒前
粗暴的荔枝完成签到,获得积分10
10秒前
大个应助yzxzdm采纳,获得10
11秒前
鸭嗦饼干完成签到,获得积分20
11秒前
杨江华关注了科研通微信公众号
11秒前
哈哈哈发布了新的文献求助10
12秒前
13秒前
852应助顾化蛹采纳,获得10
13秒前
来日可追应助辰月贰拾采纳,获得10
13秒前
13秒前
14秒前
华仔应助后来采纳,获得10
14秒前
15秒前
lxh发布了新的文献求助10
15秒前
16秒前
Nnn完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560897
求助须知:如何正确求助?哪些是违规求助? 3134711
关于积分的说明 9409189
捐赠科研通 2834950
什么是DOI,文献DOI怎么找? 1558310
邀请新用户注册赠送积分活动 728082
科研通“疑难数据库(出版商)”最低求助积分说明 716686