Improved predictive diagnosis of diabetic macular edema based on hybrid models: An observational study

光学相干层析成像 眼底(子宫) 人工智能 计算机科学 卷积神经网络 Erg公司 模式识别(心理学) 光谱图 医学 眼科 视网膜
作者
Jorge Armando Hughes-Cano,Hugo Quiroz‐Mercado,Luis Fernando Hernández-Zimbrón,Renata García-Franco,Juan Fernando Rubio Mijangos,Ellery López-Star,Marlon García-Roa,Van Charles Lansingh,Ulises Olivares‐Pinto,Stéphanie Thébault
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 107979-107979 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.107979
摘要

Diabetic Macular Edema (DME) is the most common sight-threatening complication of type 2 diabetes. Optical Coherence Tomography (OCT) is the most useful imaging technique to diagnose, follow up, and evaluate treatments for DME. However, OCT exam and devices are expensive and unavailable in all clinics in low- and middle-income countries. Our primary goal was therefore to develop an alternative method to OCT for DME diagnosis by introducing spectral information derived from spontaneous electroretinogram (ERG) signals as a single input or combined with fundus that is much more widespread. Baseline ERGs were recorded in 233 patients and transformed into scalograms and spectrograms via Wavelet and Fourier transforms, respectively. Using transfer learning, distinct Convolutional Neural Networks (CNN) were trained as classifiers for DME using OCT, scalogram, spectrogram, and eye fundus images. Input data were randomly split into training and test sets with a proportion of 80 %–20 %, respectively. The top performers for each input type were selected, OpticNet-71 for OCT, DenseNet-201 for eye fundus, and non-evoked ERG-derived scalograms, to generate a combined model by assigning different weights for each of the selected models. Model validation was performed using a dataset alien to the training phase of the models. None of the models powered by mock ERG-derived input performed well. In contrast, hybrid models showed better results, in particular, the model powered by eye fundus combined with mock ERG-derived information with a 91 % AUC and 86 % F1-score, and the model powered by OCT and mock ERG-derived scalogram images with a 93 % AUC and 89 % F1-score. These data show that the spontaneous ERG-derived input adds predictive value to the fundus- and OCT-based models to diagnose DME, except for the sensitivity of the OCT model which remains the same. The inclusion of mock ERG signals, which have recently been shown to take only 5 min to record in daylight conditions, therefore represents a potential improvement over existing OCT-based models, as well as a reliable and cost-effective alternative when combined with the fundus, especially in underserved areas, to predict DME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助积极书双采纳,获得10
1秒前
新酱应助Gigil采纳,获得10
1秒前
3秒前
现代书雪发布了新的文献求助10
5秒前
5秒前
一枚研究僧应助缥缈涔雨采纳,获得10
6秒前
完美世界应助而发的采纳,获得10
6秒前
HHH发布了新的文献求助10
7秒前
ljty完成签到,获得积分10
8秒前
9秒前
11秒前
breaddog完成签到,获得积分10
12秒前
现代书雪完成签到,获得积分20
12秒前
积极书双发布了新的文献求助10
14秒前
快乐发布了新的文献求助10
16秒前
香蕉冬云完成签到,获得积分10
16秒前
小蘑菇应助Ade采纳,获得10
17秒前
李爱国应助呆呆小猪采纳,获得10
18秒前
18秒前
熊博士完成签到 ,获得积分10
22秒前
威武烨磊完成签到,获得积分10
22秒前
霏子发布了新的文献求助10
23秒前
23秒前
26秒前
Jasper应助莫知采纳,获得10
26秒前
哈哈完成签到 ,获得积分10
27秒前
29秒前
29秒前
30秒前
可爱的函函应助鼓励男孩采纳,获得10
30秒前
来天才发布了新的文献求助10
30秒前
斯文败类应助齐桓采纳,获得10
30秒前
31秒前
龚井发布了新的文献求助10
35秒前
36秒前
37秒前
38秒前
40秒前
莫知发布了新的文献求助10
40秒前
小张完成签到,获得积分10
41秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218048
求助须知:如何正确求助?哪些是违规求助? 2867304
关于积分的说明 8155707
捐赠科研通 2534228
什么是DOI,文献DOI怎么找? 1366805
科研通“疑难数据库(出版商)”最低求助积分说明 644866
邀请新用户注册赠送积分活动 617911