Improved predictive diagnosis of diabetic macular edema based on hybrid models: An observational study

光学相干层析成像 眼底(子宫) 人工智能 计算机科学 卷积神经网络 Erg公司 模式识别(心理学) 光谱图 医学 眼科 视网膜
作者
Jorge Armando Hughes-Cano,Hugo Quiroz‐Mercado,Luis Fernando Hernández-Zimbrón,Renata García-Franco,Juan Fernando Rubio Mijangos,Ellery López-Star,Marlon García-Roa,Van Charles Lansingh,Ulises Olivares‐Pinto,Stéphanie Thébault
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107979-107979 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.107979
摘要

Diabetic Macular Edema (DME) is the most common sight-threatening complication of type 2 diabetes. Optical Coherence Tomography (OCT) is the most useful imaging technique to diagnose, follow up, and evaluate treatments for DME. However, OCT exam and devices are expensive and unavailable in all clinics in low- and middle-income countries. Our primary goal was therefore to develop an alternative method to OCT for DME diagnosis by introducing spectral information derived from spontaneous electroretinogram (ERG) signals as a single input or combined with fundus that is much more widespread. Baseline ERGs were recorded in 233 patients and transformed into scalograms and spectrograms via Wavelet and Fourier transforms, respectively. Using transfer learning, distinct Convolutional Neural Networks (CNN) were trained as classifiers for DME using OCT, scalogram, spectrogram, and eye fundus images. Input data were randomly split into training and test sets with a proportion of 80 %–20 %, respectively. The top performers for each input type were selected, OpticNet-71 for OCT, DenseNet-201 for eye fundus, and non-evoked ERG-derived scalograms, to generate a combined model by assigning different weights for each of the selected models. Model validation was performed using a dataset alien to the training phase of the models. None of the models powered by mock ERG-derived input performed well. In contrast, hybrid models showed better results, in particular, the model powered by eye fundus combined with mock ERG-derived information with a 91 % AUC and 86 % F1-score, and the model powered by OCT and mock ERG-derived scalogram images with a 93 % AUC and 89 % F1-score. These data show that the spontaneous ERG-derived input adds predictive value to the fundus- and OCT-based models to diagnose DME, except for the sensitivity of the OCT model which remains the same. The inclusion of mock ERG signals, which have recently been shown to take only 5 min to record in daylight conditions, therefore represents a potential improvement over existing OCT-based models, as well as a reliable and cost-effective alternative when combined with the fundus, especially in underserved areas, to predict DME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小付发布了新的文献求助10
1秒前
2秒前
Eureka发布了新的文献求助10
2秒前
钵钵鸡完成签到 ,获得积分20
3秒前
JJ完成签到,获得积分10
3秒前
doctorbin完成签到 ,获得积分10
4秒前
深情安青应助龙共采纳,获得10
5秒前
dddd完成签到 ,获得积分10
6秒前
小付完成签到,获得积分10
10秒前
Bonnie关注了科研通微信公众号
11秒前
11秒前
研路漫漫应助吴书维采纳,获得10
11秒前
小狗完成签到 ,获得积分10
12秒前
14秒前
慕青应助Boniu_wang采纳,获得10
16秒前
研路漫漫应助Xiaoxiao采纳,获得10
16秒前
江南烟雨如笙完成签到 ,获得积分10
16秒前
lp发布了新的文献求助10
18秒前
一直发布了新的文献求助10
18秒前
20秒前
Ava应助JacksonHe采纳,获得10
22秒前
22秒前
莫氓完成签到,获得积分10
23秒前
24秒前
wang完成签到 ,获得积分10
24秒前
打打应助Science采纳,获得10
24秒前
26秒前
研路漫漫发布了新的文献求助10
28秒前
29秒前
风清扬发布了新的文献求助30
29秒前
酷波er应助科研进化中采纳,获得10
29秒前
准了完成签到,获得积分20
31秒前
JamesPei应助义气绿柳采纳,获得10
33秒前
34秒前
宋祝福完成签到 ,获得积分10
34秒前
36秒前
37秒前
龙共发布了新的文献求助10
38秒前
JamesPei应助000采纳,获得10
39秒前
Science完成签到,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343