Improved predictive diagnosis of diabetic macular edema based on hybrid models: An observational study

光学相干层析成像 眼底(子宫) 人工智能 计算机科学 卷积神经网络 Erg公司 模式识别(心理学) 光谱图 医学 眼科 视网膜
作者
Jorge Armando Hughes-Cano,Hugo Quiroz‐Mercado,Luis Fernando Hernández-Zimbrón,Renata García-Franco,Juan Fernando Rubio Mijangos,Ellery López-Star,Marlon García-Roa,Van Charles Lansingh,Ulises Olivares‐Pinto,Stéphanie Thébault
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:170: 107979-107979 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.107979
摘要

Diabetic Macular Edema (DME) is the most common sight-threatening complication of type 2 diabetes. Optical Coherence Tomography (OCT) is the most useful imaging technique to diagnose, follow up, and evaluate treatments for DME. However, OCT exam and devices are expensive and unavailable in all clinics in low- and middle-income countries. Our primary goal was therefore to develop an alternative method to OCT for DME diagnosis by introducing spectral information derived from spontaneous electroretinogram (ERG) signals as a single input or combined with fundus that is much more widespread. Baseline ERGs were recorded in 233 patients and transformed into scalograms and spectrograms via Wavelet and Fourier transforms, respectively. Using transfer learning, distinct Convolutional Neural Networks (CNN) were trained as classifiers for DME using OCT, scalogram, spectrogram, and eye fundus images. Input data were randomly split into training and test sets with a proportion of 80 %–20 %, respectively. The top performers for each input type were selected, OpticNet-71 for OCT, DenseNet-201 for eye fundus, and non-evoked ERG-derived scalograms, to generate a combined model by assigning different weights for each of the selected models. Model validation was performed using a dataset alien to the training phase of the models. None of the models powered by mock ERG-derived input performed well. In contrast, hybrid models showed better results, in particular, the model powered by eye fundus combined with mock ERG-derived information with a 91 % AUC and 86 % F1-score, and the model powered by OCT and mock ERG-derived scalogram images with a 93 % AUC and 89 % F1-score. These data show that the spontaneous ERG-derived input adds predictive value to the fundus- and OCT-based models to diagnose DME, except for the sensitivity of the OCT model which remains the same. The inclusion of mock ERG signals, which have recently been shown to take only 5 min to record in daylight conditions, therefore represents a potential improvement over existing OCT-based models, as well as a reliable and cost-effective alternative when combined with the fundus, especially in underserved areas, to predict DME.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小云杉发布了新的文献求助10
刚刚
我先睡了发布了新的文献求助10
2秒前
木谦发布了新的文献求助10
3秒前
4秒前
受伤破茧发布了新的文献求助10
6秒前
小二郎应助yummy采纳,获得10
6秒前
Gdddd完成签到,获得积分10
7秒前
完美世界应助jerry_x采纳,获得10
7秒前
活力皮皮虾完成签到,获得积分10
7秒前
7秒前
蟒玉朝天完成签到 ,获得积分10
8秒前
1111完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助30
9秒前
10秒前
Orange应助a553355采纳,获得10
11秒前
12秒前
Hcc发布了新的文献求助10
12秒前
1111发布了新的文献求助10
13秒前
13秒前
13秒前
呆萌的傲之完成签到,获得积分10
13秒前
隐形的星月完成签到,获得积分20
14秒前
JamesPei应助受伤破茧采纳,获得10
14秒前
152完成签到 ,获得积分10
14秒前
15秒前
15秒前
CipherSage应助潇洒斑马采纳,获得30
16秒前
16秒前
张启凤完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
大轩发布了新的文献求助10
17秒前
18秒前
命苦科研人完成签到,获得积分10
19秒前
a553355发布了新的文献求助10
19秒前
111发布了新的文献求助10
21秒前
23秒前
one111发布了新的文献求助10
23秒前
今后应助你好采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729040
求助须知:如何正确求助?哪些是违规求助? 5315724
关于积分的说明 15315600
捐赠科研通 4876049
什么是DOI,文献DOI怎么找? 2619186
邀请新用户注册赠送积分活动 1568758
关于科研通互助平台的介绍 1525247