Superimposed Semantic Communication for IoT-based Real-time ECG Monitoring

计算机科学 心跳 实时计算 编码(内存) 数据压缩 数据挖掘 云计算 人工智能 计算机网络 操作系统
作者
Minxi Yang,Dahua Gao,Jiaxuan Li,Wenlong Xu,Guangming Shi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 3819-3830 被引量:1
标识
DOI:10.1109/jbhi.2024.3352927
摘要

Real-time electrocardiogram (ECG) monitoring and diagnosis through Internet of Things (IoT) are crucial for addressing the severity and timely treatment of cardiovascular diseases, enabling timely intervention and preventing life-threatening complications. However, current ECG monitoring research predominantly focuses on individual aspects such as signal compression, diagnostic analysis, or secure transmission, lacking joint optimization of various modules in IoT scenarios. To address this gap, this work proposes a novel framework based on superimposed semantic communication for real-time ECG monitoring in IoT. The framework comprises three hierarchical levels: the edge level for data collection and processing, the relay level for signal compression and coding, and the cloud level for data analysis and reconstruction. The proposed framework offers several unique advantages. By employing semantic encoding guided by ECG classification tasks, it selectively extracts crucial features within and between signals, improving compression ratio and adaptability to channel noise. The superimposed semantic encoding achieves content encryption without requiring any additional operations. Moreover, the framework utilizes lightweight anomaly detection neural networks, reducing edge device power consumption and conserving communication resources. Simulation and real experimental results demonstrate that the proposed method achieves real-time encoding and transmission of ECG signals with a compression ratio of 0.019 on the MIT-BIH dataset. Furthermore, it attains a heartbeat classification accuracy of 0.988 and a reconstruction error of 0.061.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
踏实迎梦完成签到,获得积分10
1秒前
三维码完成签到 ,获得积分10
1秒前
织诗成锦完成签到,获得积分10
1秒前
灵巧飞烟完成签到,获得积分10
1秒前
典雅的静发布了新的文献求助10
1秒前
HY完成签到,获得积分10
1秒前
Draven完成签到 ,获得积分10
1秒前
1秒前
上好佳完成签到,获得积分10
1秒前
江南发布了新的文献求助10
2秒前
mqx发布了新的文献求助10
3秒前
3秒前
季宇完成签到,获得积分10
4秒前
Mae完成签到 ,获得积分10
4秒前
后来完成签到,获得积分10
4秒前
山楂看海完成签到,获得积分10
5秒前
zr想发SCI发布了新的文献求助10
5秒前
鳗鱼书文完成签到,获得积分10
5秒前
Camellia完成签到 ,获得积分10
5秒前
杨杨发布了新的文献求助10
5秒前
宜醉宜游宜睡完成签到,获得积分0
6秒前
...发布了新的文献求助10
6秒前
正直草丛完成签到,获得积分10
6秒前
zwenng发布了新的文献求助10
7秒前
绿绿完成签到,获得积分10
7秒前
星月应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
8秒前
monly应助科研通管家采纳,获得50
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
毛慢慢发布了新的文献求助10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
1sunpf完成签到,获得积分10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516785
求助须知:如何正确求助?哪些是违规求助? 3098996
关于积分的说明 9242585
捐赠科研通 2794278
什么是DOI,文献DOI怎么找? 1533379
邀请新用户注册赠送积分活动 712721
科研通“疑难数据库(出版商)”最低求助积分说明 707431