Octant Spherical Harmonics Features for Source Localization using Artificial Intelligence based on Unified Learning Framework

八分之一(仪器) 方位角 球谐函数 算法 计算机科学 背景(考古学) 谐波 数学 模式识别(心理学) 人工智能 物理 几何学 数学分析 光学 地质学 古生物学 量子力学 电压
作者
Priyadarshini Dwivedi,Gyanajyoti Routray,Rajesh M. Hegde
标识
DOI:10.1109/tai.2024.3352530
摘要

Recent advancements in artificial intelligence (AI) have shown potential solutions to acoustic source localization in three-dimensional space. This paper proposes a new low-complex AI-based framework in the spherical harmonics (SH) domain for efficient DOA estimation. The SH coefficients are the key features for the DOA estimation and are obtained from the SH decomposition (SHD) of the spherical microphone array (SMA) recordings. Subsequently, the unified convolutional neural network (UCNN) model is trained to estimate the source azimuth and elevation from the phase and magnitude of the SH coefficient. Since the relation between the azimuth and elevation with phase and magnitude of SH coefficient is surjective. The accuracy of the training model is highly influenced by the volume of training data. In this context, the symmetric properties of the SH basis function are explored to obtain the spherical harmonics implicit symmetric coefficients (SH-ISC) that split the 3D space into octant classes. Within each octant, the phase and magnitude of the SH coefficients exhibit one-to-one correspondence with the source azimuth and elevation and execute the data redundancy. This work can be divided into two parts, a multi-class support vector machine (M-SVM) is investigated to obtain the octant classes from the SH-ISC in the first part. In the second part, the UCNN model is developed to estimate the DOA angles in each octant class. Further, the proposed technique is computationally efficient compared to the baseline learning algorithms in terms of sample and run-time complexity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一刀完成签到,获得积分10
1秒前
高高完成签到,获得积分10
1秒前
Nyah完成签到,获得积分10
2秒前
千日粉完成签到,获得积分10
2秒前
青青子衿发布了新的文献求助10
2秒前
阿庆完成签到,获得积分10
2秒前
九幺完成签到 ,获得积分10
2秒前
heyunxiang完成签到 ,获得积分10
2秒前
hyr完成签到 ,获得积分10
2秒前
简单酒窝完成签到,获得积分20
3秒前
3秒前
xiao发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
szy完成签到,获得积分10
4秒前
G1应助香蕉千风采纳,获得10
4秒前
隐形曼青应助李佳云采纳,获得10
4秒前
小曹完成签到,获得积分10
4秒前
思源应助ydk采纳,获得10
5秒前
kiki完成签到,获得积分10
5秒前
M_完成签到 ,获得积分10
6秒前
认真的一刀完成签到,获得积分0
6秒前
安安发布了新的文献求助10
6秒前
7秒前
研友_pLwpKn发布了新的文献求助30
7秒前
7秒前
huang发布了新的文献求助10
7秒前
标致小土豆完成签到 ,获得积分10
7秒前
欧小仙完成签到,获得积分10
8秒前
FD完成签到,获得积分10
9秒前
无极微光应助止咳宝采纳,获得20
9秒前
yuhui发布了新的文献求助30
9秒前
zz完成签到 ,获得积分10
9秒前
维生素完成签到,获得积分10
9秒前
lei1987发布了新的文献求助10
9秒前
Lucas应助淡然的代双采纳,获得10
10秒前
隐形曼青应助Dai采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242