Octant Spherical Harmonics Features for Source Localization using Artificial Intelligence based on Unified Learning Framework

八分之一(仪器) 方位角 球谐函数 算法 计算机科学 背景(考古学) 谐波 数学 模式识别(心理学) 人工智能 物理 几何学 数学分析 光学 地质学 古生物学 量子力学 电压
作者
Priyadarshini Dwivedi,Gyanajyoti Routray,Rajesh M. Hegde
标识
DOI:10.1109/tai.2024.3352530
摘要

Recent advancements in artificial intelligence (AI) have shown potential solutions to acoustic source localization in three-dimensional space. This paper proposes a new low-complex AI-based framework in the spherical harmonics (SH) domain for efficient DOA estimation. The SH coefficients are the key features for the DOA estimation and are obtained from the SH decomposition (SHD) of the spherical microphone array (SMA) recordings. Subsequently, the unified convolutional neural network (UCNN) model is trained to estimate the source azimuth and elevation from the phase and magnitude of the SH coefficient. Since the relation between the azimuth and elevation with phase and magnitude of SH coefficient is surjective. The accuracy of the training model is highly influenced by the volume of training data. In this context, the symmetric properties of the SH basis function are explored to obtain the spherical harmonics implicit symmetric coefficients (SH-ISC) that split the 3D space into octant classes. Within each octant, the phase and magnitude of the SH coefficients exhibit one-to-one correspondence with the source azimuth and elevation and execute the data redundancy. This work can be divided into two parts, a multi-class support vector machine (M-SVM) is investigated to obtain the octant classes from the SH-ISC in the first part. In the second part, the UCNN model is developed to estimate the DOA angles in each octant class. Further, the proposed technique is computationally efficient compared to the baseline learning algorithms in terms of sample and run-time complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黙宇循光发布了新的文献求助10
2秒前
多动症姑息状态完成签到,获得积分10
4秒前
5秒前
zhonghy0219发布了新的文献求助10
7秒前
CodeCraft应助nil采纳,获得10
11秒前
13秒前
13秒前
15秒前
Hanni发布了新的文献求助10
16秒前
搜集达人应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
19秒前
8R60d8应助科研通管家采纳,获得10
19秒前
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
YYY666发布了新的文献求助10
19秒前
思源应助科研通管家采纳,获得10
19秒前
20秒前
优雅雅绿完成签到 ,获得积分10
20秒前
Shabby0-0完成签到,获得积分10
21秒前
23秒前
雅雯发布了新的文献求助10
23秒前
栗子应助Cloud采纳,获得10
24秒前
24秒前
25秒前
nil发布了新的文献求助10
25秒前
26秒前
大大小小发布了新的文献求助10
28秒前
大模型应助XudongHou采纳,获得10
28秒前
tt关注了科研通微信公众号
29秒前
nater4ver发布了新的文献求助10
30秒前
深情安青应助沉默烨霖采纳,获得10
33秒前
乘数发布了新的文献求助10
35秒前
CodeCraft应助大大小小采纳,获得10
36秒前
37秒前
可爱的函函应助gg采纳,获得10
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161864
求助须知:如何正确求助?哪些是违规求助? 2813088
关于积分的说明 7898593
捐赠科研通 2472111
什么是DOI,文献DOI怎么找? 1316332
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129