BTC: A Binary and Triangle Combined Descriptor for 3-D Place Recognition

形状上下文 点云 人工智能 稳健性(进化) 相似性(几何) 计算机视觉 计算机科学 模式识别(心理学) 激光雷达 二进制数 背景(考古学) 匹配(统计) 数学 地理 遥感 图像(数学) 生物化学 化学 统计 算术 考古 基因
作者
Chongjian Yuan,Jiarong Lin,Zheng Liu,Hairuo Wei,Xiaoping Hong,Fu Zhang
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:40: 1580-1599 被引量:4
标识
DOI:10.1109/tro.2024.3353076
摘要

Accurate and robust place recognition is essential for robot navigation, yet achieving full pose invariance and high performance across diverse scenes remains challenging. In this work, we propose a novel global and local combined descriptor named Binary Triangle Combined (BTC) descriptor. We first extract the keypoints of a point cloud by projecting the points to planes extracted therein. Any three keypoints form a unique triangle, with the lengths of its sides constituting a triangle descriptor that captures the global appearance of the point cloud. Thanks to the distinct shape of a triangle given three side lengths, the similarity between two triangles and their vertices (i.e., keypoints) correspondence can be naturally determined from the side lengths of the triangle descriptors. The matched triangle pairs evaluate the appearance similarity between two point clouds, while the vertices' correspondence enables accurate estimation of their relative pose; both are crucial for the place recognition task. To enhance the accuracy of triangle matching, BTC introduces a binary descriptor, which describes the point distribution neighboring each keypoint. The local geometry information encoded by the binary descriptor augments descriptiveness and discriminativeness to the triangle descriptor. Collectively, the two descriptors achieve both global and local descriptions of the environment with high accuracy, efficiency, and robustness. We extensively compare the proposed BTC descriptor against state-of-the-art methods (e.g., Scan Context, LCD-Net) on a wide range of datasets collected using different types of LiDAR sensors (spinning LiDARs and non-repetitive scanning LiDARs) in various environments (urban, campus, forest, park, mountain). The quantitative results demonstrate that BTC exhibits greater adaptability and significant improvement in precision compared to its counterparts, especially in challenging cases with large viewpoint variations (e.g., reverse direction, large translation and/or rotation). To share our findings and contribute to the community, we open-source our code on GitHub: https://github.com/hku-mars/btc_descriptor .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助fox采纳,获得10
刚刚
hll发布了新的文献求助10
1秒前
霜降发布了新的文献求助10
1秒前
小仙女完成签到,获得积分10
2秒前
嘟嘟嘟完成签到 ,获得积分10
3秒前
LeungYM完成签到 ,获得积分10
3秒前
小蘑菇应助戴葱头采纳,获得20
6秒前
fenfen发布了新的文献求助10
6秒前
Estella发布了新的文献求助20
11秒前
CodeCraft应助迷路的煎蛋采纳,获得20
11秒前
12秒前
Clairezg完成签到 ,获得积分10
16秒前
17秒前
HAKUNAMATATA发布了新的文献求助10
18秒前
lam完成签到,获得积分10
18秒前
璐璐发布了新的文献求助10
21秒前
22秒前
春雷应助qiao采纳,获得10
22秒前
Jasper应助kyt采纳,获得10
23秒前
youtaixian完成签到 ,获得积分20
23秒前
24秒前
Kelly完成签到 ,获得积分10
24秒前
李爱国应助Albee采纳,获得10
25秒前
27秒前
28秒前
xujiejiuxi完成签到,获得积分10
29秒前
yeyongchang_hit完成签到,获得积分10
31秒前
32秒前
甜甜完成签到,获得积分10
32秒前
33秒前
小五完成签到 ,获得积分10
34秒前
kyt发布了新的文献求助10
34秒前
甜甜发布了新的文献求助10
36秒前
raolixiang完成签到,获得积分10
38秒前
llll发布了新的文献求助10
39秒前
niulugai完成签到,获得积分10
41秒前
丰富小蝴蝶完成签到,获得积分20
41秒前
HAKUNAMATATA完成签到,获得积分10
42秒前
子慕i完成签到,获得积分10
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Nonhuman Primate Models in Biomedical Research: State of the Science and Future Needs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3696486
求助须知:如何正确求助?哪些是违规求助? 3248358
关于积分的说明 9857190
捐赠科研通 2959797
什么是DOI,文献DOI怎么找? 1622923
邀请新用户注册赠送积分活动 768341
科研通“疑难数据库(出版商)”最低求助积分说明 741511