LRSNet: a high-efficiency lightweight model for object detection in remote sensing

计算机科学 目标检测 特征(语言学) 棱锥(几何) 人工智能 特征提取 频道(广播) 遥感 计算机视觉 深度学习 对象(语法) 计算复杂性理论 模式识别(心理学) 算法 电信 哲学 语言学 物理 光学 地质学
作者
Shiliang Zhu,Min Miao,Yutong Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:18 (01)
标识
DOI:10.1117/1.jrs.18.016502
摘要

Unmanned aerial vehicles (UAVs) exhibit the ability to flexibly conduct aerial remote-sensing imaging. By employing deep learning object-detection algorithms, they efficiently perceive objects, finding widespread application in various practical engineering tasks. Consequently, UAV-based remote sensing object detection technology holds considerable research value. However, the background of UAV remote sensing images is often complex, with varying shooting angles and heights leading to difficulties in unifying target scales and features. Moreover, there is the challenge of numerous densely distributed small targets. In addition, UAVs face significant limitations in terms of hardware resources. Against this background, we propose a lightweight remote sensing object detection network (LRSNet) model based on YOLOv5s. In the backbone of LRSNet, the lightweight network MobileNetV3 is used to substantially reduce the model’s computational complexity and parameter count. In the model’s neck, a multiscale feature pyramid network named CM-FPN is introduced to enhance the detection capability of small objects. CM-FPN comprises two key components: C3EGhost, based on GhostNet and efficient channel attention modules, and the multiscale feature fusion channel attention mechanism (MFFC). C3EGhost, serving as CM-FPN’s primary feature extraction module, possesses lower computational complexity and fewer parameters, as well as effectively reducing background interference. MFFC, as the feature fusion node of CM-FPN, can adaptively weight the fusion of shallow and deep features, acquiring more effective details and semantic information for object detection. LRSNet, evaluated on the NWPU VHR-10, DOTA V1.0, and VisDrone-2019 datasets, achieved mean average precision of 94.0%, 71.9%, and 35.6%, with Giga floating-point operations per second and Param (M) measuring only 5.8 and 4.1, respectively. This outcome affirms the efficiency of LRSNet in UAV-based remote-sensing object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小林发布了新的文献求助10
刚刚
bkagyin应助Adrenaline采纳,获得10
1秒前
2秒前
Always发布了新的文献求助10
3秒前
顾矜应助七七采纳,获得30
4秒前
CodeCraft应助xiha西希采纳,获得10
8秒前
yayyaya发布了新的文献求助10
9秒前
鬼小妞nice完成签到 ,获得积分10
9秒前
9秒前
无花果应助敏哇哇哇采纳,获得10
9秒前
9秒前
lxy发布了新的文献求助10
10秒前
科研通AI5应助糟糕的凝安采纳,获得30
10秒前
11秒前
海蓝鲸发布了新的文献求助10
14秒前
Heloise发布了新的文献求助10
15秒前
尊敬怀薇发布了新的文献求助10
16秒前
QOP应助刘慧鑫采纳,获得10
17秒前
18秒前
文静盼兰完成签到 ,获得积分10
18秒前
20秒前
爱科研的小多肉完成签到,获得积分10
22秒前
zz完成签到,获得积分10
23秒前
加油搬砖发布了新的文献求助10
25秒前
zz发布了新的文献求助10
27秒前
大模型应助李十七采纳,获得10
27秒前
道以文完成签到,获得积分10
27秒前
Wiesen完成签到,获得积分10
27秒前
28秒前
阿斯顿风格完成签到,获得积分10
30秒前
思源应助yxy采纳,获得10
31秒前
隐形曼青应助加油搬砖采纳,获得10
31秒前
爆米花应助刘慧鑫采纳,获得10
31秒前
just_cook完成签到,获得积分10
32秒前
左岸完成签到,获得积分10
33秒前
34秒前
35秒前
顾矜应助rita4616采纳,获得10
35秒前
Doin完成签到 ,获得积分10
35秒前
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670919
求助须知:如何正确求助?哪些是违规求助? 3227795
关于积分的说明 9777243
捐赠科研通 2937977
什么是DOI,文献DOI怎么找? 1609718
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959