LRSNet: a high-efficiency lightweight model for object detection in remote sensing

计算机科学 目标检测 特征(语言学) 棱锥(几何) 人工智能 特征提取 频道(广播) 遥感 计算机视觉 深度学习 对象(语法) 计算复杂性理论 模式识别(心理学) 算法 电信 哲学 语言学 物理 光学 地质学
作者
Shiliang Zhu,Min Miao,Yutong Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (01)
标识
DOI:10.1117/1.jrs.18.016502
摘要

Unmanned aerial vehicles (UAVs) exhibit the ability to flexibly conduct aerial remote-sensing imaging. By employing deep learning object-detection algorithms, they efficiently perceive objects, finding widespread application in various practical engineering tasks. Consequently, UAV-based remote sensing object detection technology holds considerable research value. However, the background of UAV remote sensing images is often complex, with varying shooting angles and heights leading to difficulties in unifying target scales and features. Moreover, there is the challenge of numerous densely distributed small targets. In addition, UAVs face significant limitations in terms of hardware resources. Against this background, we propose a lightweight remote sensing object detection network (LRSNet) model based on YOLOv5s. In the backbone of LRSNet, the lightweight network MobileNetV3 is used to substantially reduce the model’s computational complexity and parameter count. In the model’s neck, a multiscale feature pyramid network named CM-FPN is introduced to enhance the detection capability of small objects. CM-FPN comprises two key components: C3EGhost, based on GhostNet and efficient channel attention modules, and the multiscale feature fusion channel attention mechanism (MFFC). C3EGhost, serving as CM-FPN’s primary feature extraction module, possesses lower computational complexity and fewer parameters, as well as effectively reducing background interference. MFFC, as the feature fusion node of CM-FPN, can adaptively weight the fusion of shallow and deep features, acquiring more effective details and semantic information for object detection. LRSNet, evaluated on the NWPU VHR-10, DOTA V1.0, and VisDrone-2019 datasets, achieved mean average precision of 94.0%, 71.9%, and 35.6%, with Giga floating-point operations per second and Param (M) measuring only 5.8 and 4.1, respectively. This outcome affirms the efficiency of LRSNet in UAV-based remote-sensing object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
北木黎完成签到,获得积分10
2秒前
LMY完成签到,获得积分10
3秒前
3秒前
FJY完成签到,获得积分10
3秒前
李健的小迷弟应助兴奋芷采纳,获得10
4秒前
周涛发布了新的文献求助10
4秒前
牛蛙煲完成签到,获得积分10
5秒前
刘启迪完成签到,获得积分10
6秒前
戴先森发布了新的文献求助10
6秒前
7秒前
kerio发布了新的文献求助10
8秒前
Mintkarla完成签到,获得积分10
8秒前
22关闭了22文献求助
9秒前
陈同学完成签到,获得积分10
9秒前
10秒前
TZZZZ完成签到,获得积分10
12秒前
阿西吧发布了新的文献求助10
12秒前
12秒前
在水一方应助Yeah_椰椰采纳,获得10
13秒前
14秒前
cgg发布了新的文献求助10
14秒前
14秒前
无花果应助后山monkey采纳,获得10
16秒前
瘦瘦的傲松关注了科研通微信公众号
17秒前
zzy发布了新的文献求助10
17秒前
17秒前
柳柳完成签到,获得积分10
17秒前
sansan完成签到,获得积分10
18秒前
19秒前
Tasker-X完成签到,获得积分10
19秒前
kkkl发布了新的文献求助10
19秒前
梦夜孤星完成签到 ,获得积分10
19秒前
星星气球发布了新的文献求助10
19秒前
科研通AI2S应助平常采纳,获得10
20秒前
隐形曼青应助滕达采纳,获得10
20秒前
21秒前
Wonderflu发布了新的文献求助10
21秒前
做事不太冷静完成签到,获得积分20
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149784
求助须知:如何正确求助?哪些是违规求助? 2800775
关于积分的说明 7841901
捐赠科研通 2458351
什么是DOI,文献DOI怎么找? 1308425
科研通“疑难数据库(出版商)”最低求助积分说明 628499
版权声明 601706