LRSNet: a high-efficiency lightweight model for object detection in remote sensing

计算机科学 目标检测 特征(语言学) 棱锥(几何) 人工智能 特征提取 频道(广播) 遥感 计算机视觉 深度学习 对象(语法) 计算复杂性理论 模式识别(心理学) 算法 电信 哲学 语言学 物理 光学 地质学
作者
Shiliang Zhu,Min Miao,Yutong Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (01)
标识
DOI:10.1117/1.jrs.18.016502
摘要

Unmanned aerial vehicles (UAVs) exhibit the ability to flexibly conduct aerial remote-sensing imaging. By employing deep learning object-detection algorithms, they efficiently perceive objects, finding widespread application in various practical engineering tasks. Consequently, UAV-based remote sensing object detection technology holds considerable research value. However, the background of UAV remote sensing images is often complex, with varying shooting angles and heights leading to difficulties in unifying target scales and features. Moreover, there is the challenge of numerous densely distributed small targets. In addition, UAVs face significant limitations in terms of hardware resources. Against this background, we propose a lightweight remote sensing object detection network (LRSNet) model based on YOLOv5s. In the backbone of LRSNet, the lightweight network MobileNetV3 is used to substantially reduce the model’s computational complexity and parameter count. In the model’s neck, a multiscale feature pyramid network named CM-FPN is introduced to enhance the detection capability of small objects. CM-FPN comprises two key components: C3EGhost, based on GhostNet and efficient channel attention modules, and the multiscale feature fusion channel attention mechanism (MFFC). C3EGhost, serving as CM-FPN’s primary feature extraction module, possesses lower computational complexity and fewer parameters, as well as effectively reducing background interference. MFFC, as the feature fusion node of CM-FPN, can adaptively weight the fusion of shallow and deep features, acquiring more effective details and semantic information for object detection. LRSNet, evaluated on the NWPU VHR-10, DOTA V1.0, and VisDrone-2019 datasets, achieved mean average precision of 94.0%, 71.9%, and 35.6%, with Giga floating-point operations per second and Param (M) measuring only 5.8 and 4.1, respectively. This outcome affirms the efficiency of LRSNet in UAV-based remote-sensing object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
alazka发布了新的文献求助10
2秒前
李健应助全能采纳,获得10
3秒前
zls完成签到,获得积分10
4秒前
诸葛不亮完成签到,获得积分10
4秒前
6秒前
green完成签到,获得积分10
6秒前
6秒前
6秒前
9秒前
eryu25完成签到 ,获得积分10
9秒前
10秒前
愫问完成签到,获得积分10
11秒前
优美巨人发布了新的文献求助10
11秒前
cdercder应助zls采纳,获得30
13秒前
XL神放发布了新的文献求助30
13秒前
14秒前
14秒前
彗星入梦完成签到 ,获得积分10
14秒前
15秒前
15秒前
华仔应助谦让的小龙采纳,获得10
15秒前
16秒前
Julie完成签到,获得积分10
16秒前
蜡笔小昕发布了新的文献求助10
17秒前
无极微光应助细致且入微采纳,获得20
17秒前
无奈发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
旺仔仔完成签到,获得积分10
18秒前
wyt1239012发布了新的文献求助10
19秒前
19秒前
orixero应助alazka采纳,获得10
19秒前
19秒前
乐乐应助快乐的凡阳采纳,获得10
19秒前
和谐若冰完成签到,获得积分10
20秒前
thesky发布了新的文献求助20
20秒前
芋圆应助风中映秋采纳,获得10
20秒前
20秒前
我不会拉杆完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492586
求助须知:如何正确求助?哪些是违规求助? 4590623
关于积分的说明 14431212
捐赠科研通 4523084
什么是DOI,文献DOI怎么找? 2478175
邀请新用户注册赠送积分活动 1463195
关于科研通互助平台的介绍 1435900