LRSNet: a high-efficiency lightweight model for object detection in remote sensing

计算机科学 目标检测 特征(语言学) 棱锥(几何) 人工智能 特征提取 频道(广播) 遥感 计算机视觉 深度学习 对象(语法) 计算复杂性理论 模式识别(心理学) 算法 电信 哲学 语言学 物理 光学 地质学
作者
Shiliang Zhu,Min Miao,Yutong Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:18 (01)
标识
DOI:10.1117/1.jrs.18.016502
摘要

Unmanned aerial vehicles (UAVs) exhibit the ability to flexibly conduct aerial remote-sensing imaging. By employing deep learning object-detection algorithms, they efficiently perceive objects, finding widespread application in various practical engineering tasks. Consequently, UAV-based remote sensing object detection technology holds considerable research value. However, the background of UAV remote sensing images is often complex, with varying shooting angles and heights leading to difficulties in unifying target scales and features. Moreover, there is the challenge of numerous densely distributed small targets. In addition, UAVs face significant limitations in terms of hardware resources. Against this background, we propose a lightweight remote sensing object detection network (LRSNet) model based on YOLOv5s. In the backbone of LRSNet, the lightweight network MobileNetV3 is used to substantially reduce the model’s computational complexity and parameter count. In the model’s neck, a multiscale feature pyramid network named CM-FPN is introduced to enhance the detection capability of small objects. CM-FPN comprises two key components: C3EGhost, based on GhostNet and efficient channel attention modules, and the multiscale feature fusion channel attention mechanism (MFFC). C3EGhost, serving as CM-FPN’s primary feature extraction module, possesses lower computational complexity and fewer parameters, as well as effectively reducing background interference. MFFC, as the feature fusion node of CM-FPN, can adaptively weight the fusion of shallow and deep features, acquiring more effective details and semantic information for object detection. LRSNet, evaluated on the NWPU VHR-10, DOTA V1.0, and VisDrone-2019 datasets, achieved mean average precision of 94.0%, 71.9%, and 35.6%, with Giga floating-point operations per second and Param (M) measuring only 5.8 and 4.1, respectively. This outcome affirms the efficiency of LRSNet in UAV-based remote-sensing object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
世界第一大庸医完成签到,获得积分10
刚刚
小巧老鼠完成签到,获得积分10
1秒前
Flynn发布了新的文献求助10
3秒前
忧伤的彩虹完成签到,获得积分10
3秒前
Akim应助Qian采纳,获得100
4秒前
dilli发布了新的文献求助10
4秒前
7秒前
英吉利25发布了新的文献求助30
7秒前
阿凉完成签到,获得积分10
8秒前
小巧老鼠发布了新的文献求助10
8秒前
顾矜应助虚幻的不愁采纳,获得10
8秒前
小小技术工完成签到 ,获得积分10
11秒前
倚栏听风完成签到 ,获得积分10
12秒前
12秒前
12秒前
Flynn完成签到,获得积分10
13秒前
13秒前
liangliang发布了新的文献求助10
14秒前
逍遥猪皮完成签到,获得积分10
14秒前
16秒前
九丸子发布了新的文献求助10
17秒前
ccq发布了新的文献求助10
17秒前
cocolu发布了新的文献求助20
17秒前
李健应助欣喜的以丹采纳,获得10
18秒前
hping发布了新的文献求助20
21秒前
22秒前
111发布了新的文献求助10
22秒前
22秒前
23秒前
今后应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
欣喜的以丹完成签到,获得积分10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
科奇应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
xuzj应助科研通管家采纳,获得30
24秒前
water应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167