LRSNet: a high-efficiency lightweight model for object detection in remote sensing

计算机科学 目标检测 特征(语言学) 棱锥(几何) 人工智能 特征提取 频道(广播) 遥感 计算机视觉 深度学习 对象(语法) 计算复杂性理论 模式识别(心理学) 算法 电信 哲学 语言学 物理 光学 地质学
作者
Shiliang Zhu,Min Miao,Yutong Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:18 (01)
标识
DOI:10.1117/1.jrs.18.016502
摘要

Unmanned aerial vehicles (UAVs) exhibit the ability to flexibly conduct aerial remote-sensing imaging. By employing deep learning object-detection algorithms, they efficiently perceive objects, finding widespread application in various practical engineering tasks. Consequently, UAV-based remote sensing object detection technology holds considerable research value. However, the background of UAV remote sensing images is often complex, with varying shooting angles and heights leading to difficulties in unifying target scales and features. Moreover, there is the challenge of numerous densely distributed small targets. In addition, UAVs face significant limitations in terms of hardware resources. Against this background, we propose a lightweight remote sensing object detection network (LRSNet) model based on YOLOv5s. In the backbone of LRSNet, the lightweight network MobileNetV3 is used to substantially reduce the model’s computational complexity and parameter count. In the model’s neck, a multiscale feature pyramid network named CM-FPN is introduced to enhance the detection capability of small objects. CM-FPN comprises two key components: C3EGhost, based on GhostNet and efficient channel attention modules, and the multiscale feature fusion channel attention mechanism (MFFC). C3EGhost, serving as CM-FPN’s primary feature extraction module, possesses lower computational complexity and fewer parameters, as well as effectively reducing background interference. MFFC, as the feature fusion node of CM-FPN, can adaptively weight the fusion of shallow and deep features, acquiring more effective details and semantic information for object detection. LRSNet, evaluated on the NWPU VHR-10, DOTA V1.0, and VisDrone-2019 datasets, achieved mean average precision of 94.0%, 71.9%, and 35.6%, with Giga floating-point operations per second and Param (M) measuring only 5.8 and 4.1, respectively. This outcome affirms the efficiency of LRSNet in UAV-based remote-sensing object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌大滨州完成签到,获得积分10
1秒前
无心的闭月完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
zfr662完成签到,获得积分10
3秒前
3秒前
Ywffffff发布了新的文献求助10
4秒前
NexusExplorer应助淡淡的寻凝采纳,获得10
4秒前
可爱的函函应助tamaco采纳,获得10
5秒前
6秒前
英姑应助科研通管家采纳,获得10
7秒前
lyh发布了新的文献求助10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
lishiwei发布了新的文献求助10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
Dean应助科研通管家采纳,获得50
7秒前
Dean应助科研通管家采纳,获得50
7秒前
Lucas应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
微笑向卉发布了新的文献求助10
8秒前
8秒前
啾啾发布了新的文献求助10
9秒前
曾经沛容关注了科研通微信公众号
11秒前
Lucas应助www什么采纳,获得10
11秒前
流云发布了新的文献求助10
11秒前
12秒前
李乔完成签到,获得积分10
12秒前
13秒前
一木完成签到,获得积分10
13秒前
汉堡包应助wuuw采纳,获得10
13秒前
李健应助lyh采纳,获得10
14秒前
三年半完成签到,获得积分10
14秒前
14秒前
小金星星发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088395
求助须知:如何正确求助?哪些是违规求助? 4303286
关于积分的说明 13410954
捐赠科研通 4129075
什么是DOI,文献DOI怎么找? 2261109
邀请新用户注册赠送积分活动 1265259
关于科研通互助平台的介绍 1199722