LRSNet: a high-efficiency lightweight model for object detection in remote sensing

计算机科学 目标检测 特征(语言学) 棱锥(几何) 人工智能 特征提取 频道(广播) 遥感 计算机视觉 深度学习 对象(语法) 计算复杂性理论 模式识别(心理学) 算法 电信 物理 光学 地质学 哲学 语言学
作者
Shiliang Zhu,Min Miao,Yutong Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (01)
标识
DOI:10.1117/1.jrs.18.016502
摘要

Unmanned aerial vehicles (UAVs) exhibit the ability to flexibly conduct aerial remote-sensing imaging. By employing deep learning object-detection algorithms, they efficiently perceive objects, finding widespread application in various practical engineering tasks. Consequently, UAV-based remote sensing object detection technology holds considerable research value. However, the background of UAV remote sensing images is often complex, with varying shooting angles and heights leading to difficulties in unifying target scales and features. Moreover, there is the challenge of numerous densely distributed small targets. In addition, UAVs face significant limitations in terms of hardware resources. Against this background, we propose a lightweight remote sensing object detection network (LRSNet) model based on YOLOv5s. In the backbone of LRSNet, the lightweight network MobileNetV3 is used to substantially reduce the model’s computational complexity and parameter count. In the model’s neck, a multiscale feature pyramid network named CM-FPN is introduced to enhance the detection capability of small objects. CM-FPN comprises two key components: C3EGhost, based on GhostNet and efficient channel attention modules, and the multiscale feature fusion channel attention mechanism (MFFC). C3EGhost, serving as CM-FPN’s primary feature extraction module, possesses lower computational complexity and fewer parameters, as well as effectively reducing background interference. MFFC, as the feature fusion node of CM-FPN, can adaptively weight the fusion of shallow and deep features, acquiring more effective details and semantic information for object detection. LRSNet, evaluated on the NWPU VHR-10, DOTA V1.0, and VisDrone-2019 datasets, achieved mean average precision of 94.0%, 71.9%, and 35.6%, with Giga floating-point operations per second and Param (M) measuring only 5.8 and 4.1, respectively. This outcome affirms the efficiency of LRSNet in UAV-based remote-sensing object detection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SBoot完成签到,获得积分10
3秒前
3秒前
善学以致用应助ANTI采纳,获得10
3秒前
3秒前
小猪坨完成签到,获得积分10
4秒前
4秒前
坦率问枫完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
茹茹完成签到 ,获得积分10
4秒前
无花果应助Vary采纳,获得10
5秒前
sylinmm完成签到,获得积分10
6秒前
F_ken完成签到 ,获得积分10
7秒前
7秒前
7秒前
无辜的梦竹完成签到,获得积分10
8秒前
会飞的鱼完成签到,获得积分10
8秒前
AKK发布了新的文献求助10
8秒前
melone完成签到,获得积分10
8秒前
9秒前
wanci应助嘿嘿采纳,获得10
9秒前
柳叶发布了新的文献求助10
11秒前
吴未发布了新的文献求助10
12秒前
12秒前
耶耶发布了新的文献求助10
12秒前
有生之年完成签到,获得积分10
12秒前
13秒前
仰泳鲫鱼发布了新的文献求助30
13秒前
小鹅完成签到,获得积分10
14秒前
Lee发布了新的文献求助10
17秒前
17秒前
18秒前
宫戚戚完成签到 ,获得积分10
19秒前
20秒前
20秒前
微弱de胖头完成签到,获得积分10
20秒前
踏实以丹发布了新的文献求助20
21秒前
蔓越莓麻薯完成签到,获得积分10
22秒前
刘勤杰完成签到,获得积分10
23秒前
打打应助zrw采纳,获得10
23秒前
chocoooooo3发布了新的文献求助10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093