LRSNet: a high-efficiency lightweight model for object detection in remote sensing

计算机科学 目标检测 特征(语言学) 棱锥(几何) 人工智能 特征提取 频道(广播) 遥感 计算机视觉 深度学习 对象(语法) 计算复杂性理论 模式识别(心理学) 算法 电信 物理 光学 地质学 哲学 语言学
作者
Shiliang Zhu,Min Miao,Yutong Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (01)
标识
DOI:10.1117/1.jrs.18.016502
摘要

Unmanned aerial vehicles (UAVs) exhibit the ability to flexibly conduct aerial remote-sensing imaging. By employing deep learning object-detection algorithms, they efficiently perceive objects, finding widespread application in various practical engineering tasks. Consequently, UAV-based remote sensing object detection technology holds considerable research value. However, the background of UAV remote sensing images is often complex, with varying shooting angles and heights leading to difficulties in unifying target scales and features. Moreover, there is the challenge of numerous densely distributed small targets. In addition, UAVs face significant limitations in terms of hardware resources. Against this background, we propose a lightweight remote sensing object detection network (LRSNet) model based on YOLOv5s. In the backbone of LRSNet, the lightweight network MobileNetV3 is used to substantially reduce the model’s computational complexity and parameter count. In the model’s neck, a multiscale feature pyramid network named CM-FPN is introduced to enhance the detection capability of small objects. CM-FPN comprises two key components: C3EGhost, based on GhostNet and efficient channel attention modules, and the multiscale feature fusion channel attention mechanism (MFFC). C3EGhost, serving as CM-FPN’s primary feature extraction module, possesses lower computational complexity and fewer parameters, as well as effectively reducing background interference. MFFC, as the feature fusion node of CM-FPN, can adaptively weight the fusion of shallow and deep features, acquiring more effective details and semantic information for object detection. LRSNet, evaluated on the NWPU VHR-10, DOTA V1.0, and VisDrone-2019 datasets, achieved mean average precision of 94.0%, 71.9%, and 35.6%, with Giga floating-point operations per second and Param (M) measuring only 5.8 and 4.1, respectively. This outcome affirms the efficiency of LRSNet in UAV-based remote-sensing object detection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助年年年年采纳,获得10
2秒前
小武完成签到,获得积分10
3秒前
3秒前
LX完成签到,获得积分10
3秒前
Mangooo完成签到,获得积分10
3秒前
猫猫无敌完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
聪明帅哥发布了新的文献求助10
4秒前
skycool发布了新的文献求助10
4秒前
4秒前
回复对方完成签到,获得积分10
5秒前
5秒前
理li发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助30
5秒前
6秒前
6秒前
果称完成签到,获得积分10
6秒前
ZS驳回了Akim应助
7秒前
猫猫无敌发布了新的文献求助10
7秒前
8秒前
朴素八宝粥完成签到,获得积分10
8秒前
9秒前
完美世界应助余泽楷采纳,获得10
9秒前
苦行僧发布了新的文献求助30
10秒前
甄昕发布了新的文献求助10
10秒前
10秒前
852应助skycool采纳,获得10
10秒前
11秒前
笨笨凡松完成签到,获得积分10
11秒前
滴答完成签到 ,获得积分10
11秒前
负责雨安发布了新的文献求助10
11秒前
12秒前
路过蜻蜓完成签到,获得积分10
12秒前
12秒前
年年年年发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
Xiu发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400