LRSNet: a high-efficiency lightweight model for object detection in remote sensing

计算机科学 目标检测 特征(语言学) 棱锥(几何) 人工智能 特征提取 频道(广播) 遥感 计算机视觉 深度学习 对象(语法) 计算复杂性理论 模式识别(心理学) 算法 电信 物理 光学 地质学 哲学 语言学
作者
Shiliang Zhu,Min Miao,Yutong Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (01)
标识
DOI:10.1117/1.jrs.18.016502
摘要

Unmanned aerial vehicles (UAVs) exhibit the ability to flexibly conduct aerial remote-sensing imaging. By employing deep learning object-detection algorithms, they efficiently perceive objects, finding widespread application in various practical engineering tasks. Consequently, UAV-based remote sensing object detection technology holds considerable research value. However, the background of UAV remote sensing images is often complex, with varying shooting angles and heights leading to difficulties in unifying target scales and features. Moreover, there is the challenge of numerous densely distributed small targets. In addition, UAVs face significant limitations in terms of hardware resources. Against this background, we propose a lightweight remote sensing object detection network (LRSNet) model based on YOLOv5s. In the backbone of LRSNet, the lightweight network MobileNetV3 is used to substantially reduce the model’s computational complexity and parameter count. In the model’s neck, a multiscale feature pyramid network named CM-FPN is introduced to enhance the detection capability of small objects. CM-FPN comprises two key components: C3EGhost, based on GhostNet and efficient channel attention modules, and the multiscale feature fusion channel attention mechanism (MFFC). C3EGhost, serving as CM-FPN’s primary feature extraction module, possesses lower computational complexity and fewer parameters, as well as effectively reducing background interference. MFFC, as the feature fusion node of CM-FPN, can adaptively weight the fusion of shallow and deep features, acquiring more effective details and semantic information for object detection. LRSNet, evaluated on the NWPU VHR-10, DOTA V1.0, and VisDrone-2019 datasets, achieved mean average precision of 94.0%, 71.9%, and 35.6%, with Giga floating-point operations per second and Param (M) measuring only 5.8 and 4.1, respectively. This outcome affirms the efficiency of LRSNet in UAV-based remote-sensing object detection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王亚奇完成签到,获得积分20
刚刚
慕青应助怡然雁风采纳,获得10
1秒前
鱼鱼完成签到,获得积分10
1秒前
ww完成签到,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
PJN完成签到,获得积分10
2秒前
婷婷发布了新的文献求助10
2秒前
科研通AI6.1应助MUMU采纳,获得30
2秒前
蜗牛完成签到,获得积分10
3秒前
3秒前
Maestro_S应助文件撤销了驳回
3秒前
江海小舟发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
Criminology34应助尉迟富采纳,获得20
4秒前
i_jueloa完成签到 ,获得积分10
4秒前
Akim应助小龚采纳,获得10
5秒前
pipipiu完成签到,获得积分20
5秒前
Eureka完成签到,获得积分10
5秒前
李健的小迷弟应助左传琦采纳,获得10
6秒前
张zhang发布了新的文献求助10
6秒前
Akim应助冷静的荔枝采纳,获得30
6秒前
MapleLeaf完成签到,获得积分10
6秒前
慕青应助虞子采纳,获得10
6秒前
sun完成签到,获得积分10
7秒前
7秒前
8秒前
Tiffy发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
刘闹闹发布了新的文献求助10
9秒前
10秒前
Twonej举报小王的白衬衫求助涉嫌违规
10秒前
烟花应助PJN采纳,获得30
11秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760032
求助须知:如何正确求助?哪些是违规求助? 5522946
关于积分的说明 15395925
捐赠科研通 4896929
什么是DOI,文献DOI怎么找? 2633965
邀请新用户注册赠送积分活动 1582032
关于科研通互助平台的介绍 1537478