LRSNet: a high-efficiency lightweight model for object detection in remote sensing

计算机科学 目标检测 特征(语言学) 棱锥(几何) 人工智能 特征提取 频道(广播) 遥感 计算机视觉 深度学习 对象(语法) 计算复杂性理论 模式识别(心理学) 算法 电信 物理 光学 地质学 哲学 语言学
作者
Shiliang Zhu,Min Miao,Yutong Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (01)
标识
DOI:10.1117/1.jrs.18.016502
摘要

Unmanned aerial vehicles (UAVs) exhibit the ability to flexibly conduct aerial remote-sensing imaging. By employing deep learning object-detection algorithms, they efficiently perceive objects, finding widespread application in various practical engineering tasks. Consequently, UAV-based remote sensing object detection technology holds considerable research value. However, the background of UAV remote sensing images is often complex, with varying shooting angles and heights leading to difficulties in unifying target scales and features. Moreover, there is the challenge of numerous densely distributed small targets. In addition, UAVs face significant limitations in terms of hardware resources. Against this background, we propose a lightweight remote sensing object detection network (LRSNet) model based on YOLOv5s. In the backbone of LRSNet, the lightweight network MobileNetV3 is used to substantially reduce the model’s computational complexity and parameter count. In the model’s neck, a multiscale feature pyramid network named CM-FPN is introduced to enhance the detection capability of small objects. CM-FPN comprises two key components: C3EGhost, based on GhostNet and efficient channel attention modules, and the multiscale feature fusion channel attention mechanism (MFFC). C3EGhost, serving as CM-FPN’s primary feature extraction module, possesses lower computational complexity and fewer parameters, as well as effectively reducing background interference. MFFC, as the feature fusion node of CM-FPN, can adaptively weight the fusion of shallow and deep features, acquiring more effective details and semantic information for object detection. LRSNet, evaluated on the NWPU VHR-10, DOTA V1.0, and VisDrone-2019 datasets, achieved mean average precision of 94.0%, 71.9%, and 35.6%, with Giga floating-point operations per second and Param (M) measuring only 5.8 and 4.1, respectively. This outcome affirms the efficiency of LRSNet in UAV-based remote-sensing object detection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一条热带鱼完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
小迷糊完成签到,获得积分10
1秒前
liduorou完成签到,获得积分10
1秒前
英姑应助Yxian采纳,获得10
2秒前
3秒前
活泼巧曼发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
快乐的云发布了新的文献求助10
6秒前
英姑应助Qps采纳,获得10
7秒前
10秒前
10秒前
flora发布了新的文献求助10
10秒前
魂梦与君同完成签到 ,获得积分10
11秒前
酷波er应助su采纳,获得10
11秒前
12秒前
聪明新筠完成签到,获得积分10
12秒前
活泼巧曼完成签到,获得积分10
12秒前
充电宝应助肚子饿了采纳,获得10
12秒前
13秒前
13秒前
七木完成签到,获得积分10
13秒前
14秒前
归尘发布了新的文献求助10
15秒前
15秒前
15秒前
小文_official完成签到 ,获得积分10
16秒前
thunder完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
氨气完成签到 ,获得积分10
17秒前
震动的曲奇完成签到,获得积分10
17秒前
18秒前
12345发布了新的文献求助10
18秒前
19秒前
上官若男应助333采纳,获得10
19秒前
20秒前
进击的软骨完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207