亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning in the prediction of in-hospital mortality in patients with first acute myocardial infarction

医学 逻辑回归 接收机工作特性 梯度升压 心肌梗塞 支持向量机 人工智能 机器学习 内科学 多层感知器 随机森林 计算机科学 人工神经网络
作者
Xiaoli Zhu,Bojian Xie,Yijun Chen,Hanqian Zeng,Jing Hu
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:554: 117776-117776 被引量:2
标识
DOI:10.1016/j.cca.2024.117776
摘要

Persistent efforts are required to further reduce the in-hospital mortality of patients suffering from acute myocardial infarction (AMI), even in the face of a global trend of declining AMI-related fatalities. We investigated deep machine learning models for in-hospital death prediction in patients on their first AMI.In this 2-center retrospective analysis, first AMI patients from Hospital I and Hospital II were included; 4783 patients from Hospital 1 were split in a 7:3 ratio between the training and testing sets. Data from 1053 AMI patients in Hospital II was used for further validation. 70 clinical information and laboratory examination parameters as predictive indicators were included. Logistic Regression Classifier (LR), Random Forests Classifier (RF), eXtreme Gradient Boosting (XGB), Support Vector Machine Classifier (SVM), Multilayer Perceptron (MLP), Gradient Boosting Machine (GBM), Bootstrapped Aggregation (Bagging) models with AMI patients were developed. The importance of selected variables was obtained through the Shapley Additive exPlanations (SHAP) method. The performance of each model was shown using the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (Average Precision; AP).The in-hospital mortality for AMI in the training, testing, and validation sets were 5.7 %, 5.6 %, and 6.0 %, respectively. The top 8 predictors were D-dimer, brain natriuretic peptide, cardiogenic shock, neutrophil, prothrombin time, blood urea nitrogen, cardiac arrest, and phosphorus. In the testing cohort, the models of LR, RF, XGB, SVM, MLP, GBM, and Bagging yielded AUROC values of 0.929, 0.931, 0.907, 0.868, 0.907, 0.923, and 0.932, respectively. Bagging has good predictive value and certain clinical value in external validation with AUROC 0.893.In order to improve the forecasting accuracy of the risk of AMI patients, guide clinical nursing practice, and lower AMI inpatient mortality, this study looked into significant indicators and the optimal models for predicting AMI inpatient mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助LINshan1993采纳,获得10
18秒前
51秒前
X_L_iang发布了新的文献求助10
55秒前
woxinyouyou完成签到,获得积分0
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
大轩完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI5应助晚睡生采纳,获得10
3分钟前
fangyifang完成签到,获得积分10
3分钟前
3分钟前
zz发布了新的文献求助10
4分钟前
在水一方应助zz采纳,获得10
4分钟前
5分钟前
LINshan1993发布了新的文献求助10
5分钟前
无奈以南完成签到 ,获得积分10
5分钟前
LINshan1993完成签到,获得积分10
5分钟前
6分钟前
hugo发布了新的文献求助10
6分钟前
hugo完成签到,获得积分10
6分钟前
知行者完成签到 ,获得积分10
7分钟前
ldh032应助知行者采纳,获得10
7分钟前
Hans完成签到,获得积分10
7分钟前
zm完成签到,获得积分10
8分钟前
10分钟前
晚睡生发布了新的文献求助10
10分钟前
史前巨怪完成签到,获得积分10
12分钟前
科研通AI5应助其实采纳,获得10
12分钟前
12分钟前
L_MD完成签到,获得积分10
13分钟前
搜集达人应助伶俐寒凝采纳,获得30
13分钟前
14分钟前
深情安青应助Noob_saibot采纳,获得10
14分钟前
其实发布了新的文献求助10
14分钟前
Oracle应助linear0525采纳,获得50
14分钟前
科研通AI5应助其实采纳,获得10
14分钟前
高高的丹雪完成签到 ,获得积分10
14分钟前
15分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763577
求助须知:如何正确求助?哪些是违规求助? 3308141
关于积分的说明 10142736
捐赠科研通 3023232
什么是DOI,文献DOI怎么找? 1659471
邀请新用户注册赠送积分活动 792698
科研通“疑难数据库(出版商)”最低求助积分说明 755106