Physics-informed neural networks for parametric compressible Euler equations

人工神经网络 欧拉方程 可压缩流 守恒定律 计算机科学 计算流体力学 偏微分方程 维数(图论) 有限元法 应用数学 参数统计 压缩性 数学 人工智能 物理 数学分析 机械 热力学 统计 纯数学
作者
Simon Wassing,Stefan Langer,Philipp Bekemeyer
出处
期刊:Computers & Fluids [Elsevier BV]
卷期号:270: 106164-106164 被引量:6
标识
DOI:10.1016/j.compfluid.2023.106164
摘要

The numerical approximation of solutions to the compressible Euler and Navier–Stokes equations is a crucial but challenging task with relevance in various fields of science and engineering. Recently, methods from deep learning have been successfully employed for solving partial differential equations by incorporating the equations into a loss function that is minimized during the training of a neural network. This approach yields a so-called physics-informed neural network. It is not based upon classical discretizations, such as finite-volume or finite-element schemes, and can even address parametric problems in a straightforward manner. This has raised the question, whether physics-informed neural networks may be a viable alternative to conventional methods for computational fluid dynamics. In this article we introduce an adaptive artificial viscosity reduction procedure for physics-informed neural networks enabling approximate parametric solutions for forward problems governed by the stationary two-dimensional Euler equations in sub- and supersonic conditions. To the best of our knowledge, this is the first time that the concept of artificial viscosity in physics-informed neural networks is successfully applied to a complex system of conservation laws in more than one dimension. Moreover, we highlight the unique ability of this method to solve forward problems in a continuous parameter space. The presented methodology takes the next step of bringing physics-informed neural networks closer towards realistic compressible flow applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的巧荷完成签到,获得积分10
1秒前
apt应助Yang采纳,获得10
2秒前
半夏完成签到 ,获得积分10
3秒前
可莉不想出去玩完成签到,获得积分20
4秒前
禾沐发布了新的文献求助10
5秒前
称心寒松发布了新的文献求助10
5秒前
倔强的大萝卜完成签到,获得积分0
5秒前
6秒前
6秒前
7秒前
7秒前
8秒前
科研通AI5应助lqh0211采纳,获得10
8秒前
香菜皮蛋完成签到 ,获得积分10
10秒前
田様应助YIWENNN采纳,获得10
10秒前
无法发布了新的文献求助10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
迷路的幻灵关注了科研通微信公众号
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
现代期待发布了新的文献求助10
11秒前
大模型应助科研通管家采纳,获得30
12秒前
华仔应助科研通管家采纳,获得10
12秒前
咕咕咕发布了新的文献求助10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
13秒前
8R60d8应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得20
14秒前
8R60d8应助科研通管家采纳,获得10
14秒前
14秒前
科目三应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427