Physics-informed neural networks for parametric compressible Euler equations

人工神经网络 欧拉方程 可压缩流 守恒定律 计算机科学 计算流体力学 偏微分方程 维数(图论) 有限元法 应用数学 参数统计 压缩性 数学 人工智能 物理 数学分析 机械 统计 纯数学 热力学
作者
Simon Wassing,Stefan Langer,Philipp Bekemeyer
出处
期刊:Computers & Fluids [Elsevier]
卷期号:270: 106164-106164 被引量:6
标识
DOI:10.1016/j.compfluid.2023.106164
摘要

The numerical approximation of solutions to the compressible Euler and Navier–Stokes equations is a crucial but challenging task with relevance in various fields of science and engineering. Recently, methods from deep learning have been successfully employed for solving partial differential equations by incorporating the equations into a loss function that is minimized during the training of a neural network. This approach yields a so-called physics-informed neural network. It is not based upon classical discretizations, such as finite-volume or finite-element schemes, and can even address parametric problems in a straightforward manner. This has raised the question, whether physics-informed neural networks may be a viable alternative to conventional methods for computational fluid dynamics. In this article we introduce an adaptive artificial viscosity reduction procedure for physics-informed neural networks enabling approximate parametric solutions for forward problems governed by the stationary two-dimensional Euler equations in sub- and supersonic conditions. To the best of our knowledge, this is the first time that the concept of artificial viscosity in physics-informed neural networks is successfully applied to a complex system of conservation laws in more than one dimension. Moreover, we highlight the unique ability of this method to solve forward problems in a continuous parameter space. The presented methodology takes the next step of bringing physics-informed neural networks closer towards realistic compressible flow applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助Phantom1234采纳,获得10
1秒前
科研通AI5应助WNL采纳,获得10
1秒前
2秒前
chen完成签到,获得积分10
2秒前
冰勾板勾发布了新的文献求助10
2秒前
彭于晏应助xzn1123采纳,获得10
3秒前
CipherSage应助黄文怡采纳,获得10
3秒前
4秒前
5秒前
xlz110完成签到,获得积分10
5秒前
5秒前
元谷雪发布了新的文献求助10
5秒前
君无邪发布了新的文献求助20
5秒前
柒柒完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
franca2005发布了新的文献求助10
7秒前
kushdw完成签到,获得积分20
7秒前
撒哈拉发布了新的文献求助10
8秒前
zspzz完成签到,获得积分10
8秒前
ee发布了新的文献求助10
8秒前
西蓝花完成签到,获得积分10
9秒前
xzn1123重新开启了寻觅文献应助
9秒前
西汉高颜值土豆完成签到,获得积分10
10秒前
忉怛完成签到,获得积分20
10秒前
完美世界应助meng采纳,获得10
10秒前
10秒前
ding应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得30
11秒前
完美世界应助科研通管家采纳,获得20
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479266
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116103
捐赠科研通 2761731
什么是DOI,文献DOI怎么找? 1515477
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699931