First-principles study on the electronic properties of biphenylene, net-graphene, graphene+, and T-graphene based nanoribbons

石墨烯 石墨烯纳米带 联苯 之字形的 带隙 材料科学 纳米技术 半导体 碳纤维 凝聚态物理 光电子学 物理 复合材料 数学 亚苯基 复合数 聚合物 几何学
作者
Wensheng Zhou,Cheng Luo,Yun Chao,Songbo Xiong,Menegqiu Long,Tong Chen
出处
期刊:RSC Advances [The Royal Society of Chemistry]
卷期号:14 (12): 8067-8074 被引量:2
标识
DOI:10.1039/d4ra00806e
摘要

Since the successful separation of graphene, carbon materials with the excellent physical and chemical properties have attracted the interest of a large number of researchers. In this paper, density functional theory combined with non-equilibrium Green's function is used to systematically study the electronic structures of two-dimensional biphenylene, net-graphene, graphene+ and T-graphene, and to reveal the electron transport properties of net-graphene nanodevices under asymmetric regulation. The results show that biphenylene, net-graphene, graphene+, and T-graphene all show metallic properties, in which biphenylene and net-graphene show anisotropy, while graphene+ and T-graphene show isotropy. In addition, for the one-dimensional new carbon based nanoribbons, except for the armchair-edged net-graphene and biphenylene nanoribbons, which exhibit semiconductor properties and a band gap value of 0.08 eV, the rest of the carbon nanoribbons display metal properties. Interestingly, two of them showed a tendency to oscillate and decrease the band gap value with increasing width, while BPN-2 biphenylene nanoribbons directly changed from exhibiting semiconductor to metallic properties with increasing width combination with no oscillation. The electronic transport properties of net-graphene nanoribbons based nanodevice models for electrons transform along zigzag and armchair directions are systematically studied. An obvious negative differential resistance characteristic along the armchair and zigzag directions can be found. Overall, these interesting results show that these new net-graphene nanodevices have good practical application prospects in future electronic nanodevices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77777发布了新的文献求助10
刚刚
刚刚
现代的擎苍完成签到,获得积分10
1秒前
浮云完成签到,获得积分10
2秒前
3秒前
保持淡定完成签到,获得积分10
3秒前
不喝奶茶发布了新的文献求助10
5秒前
树上种树给树上种树的求助进行了留言
6秒前
Ava应助一所悬命采纳,获得10
6秒前
wanci应助qq小兵采纳,获得10
7秒前
7秒前
SDM完成签到 ,获得积分10
8秒前
10秒前
英姑应助畅快不平采纳,获得10
10秒前
领导范儿应助畅快不平采纳,获得10
10秒前
无花果应助畅快不平采纳,获得10
10秒前
小蘑菇应助畅快不平采纳,获得10
10秒前
852应助畅快不平采纳,获得10
10秒前
11秒前
俏皮的映易完成签到,获得积分10
11秒前
假面绅士发布了新的文献求助10
12秒前
酷酷的从梦完成签到,获得积分10
13秒前
小花妹妹应助科研通管家采纳,获得10
14秒前
幸福发布了新的文献求助80
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
sssssnape发布了新的文献求助10
14秒前
田様应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
思源应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
福福气发布了新的文献求助10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
ephore应助科研通管家采纳,获得30
14秒前
iNk应助科研通管家采纳,获得10
15秒前
不喝奶茶完成签到,获得积分20
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240