Ocean Bottom Distributed Acoustic Sensing for Oceanic Seismicity Detection and Seismic Ocean Thermometry

海底 地质学 诱发地震 地震学 海洋学
作者
Zhichao Shen,Wenbo Wu
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:129 (3) 被引量:10
标识
DOI:10.1029/2023jb027799
摘要

Abstract A T ‐wave is a seismo‐acoustic wave that can travel a long distance in the ocean with little attenuation, making it valuable for monitoring remote tectonic activity and changes in ocean temperature using seismic ocean thermometry (SOT). However, current high‐quality T ‐wave stations are sparsely distributed, limiting the detectability of oceanic seismicity and the spatial resolution of global SOT. The use of ocean bottom distributed acoustic sensing (OBDAS), through the conversion of telecommunication cables into dense seismic arrays, is a cost‐effective and scalable means to complement existing seismic stations. Here, we systematically investigate the performance of OBDAS for oceanic seismicity detection and SOT using a 4‐day Ocean Observatories Initiative community experiment offshore Oregon. We first present T ‐wave observations from distant and regional earthquakes and develop a curvelet denoising scheme to enhance T ‐wave signals on OBDAS. After denoising, we show that OBDAS can detect and locate more and smaller T ‐wave events than regional OBS network. During the 4‐day experiment, we detect 92 oceanic earthquakes, most of which are missing from existing catalogs. Leveraging the sensor density and cable directionality, we demonstrate the feasibility of source azimuth estimation for regional Blanco earthquakes. We also evaluate the SOT performance of OBDAS using pseudo‐repeating earthquake T ‐waves. Our results show that OBDAS can utilize repeating earthquakes as small as M 3.5 for SOT, outperforming ocean bottom seismometers. However, ocean ambient natural and instrumental noise strongly affects the performance of OBDAS for oceanic seismicity detection and SOT, requiring further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动漫大师发布了新的文献求助10
刚刚
Orange应助hf采纳,获得30
刚刚
涣醒完成签到,获得积分10
1秒前
douyq发布了新的文献求助10
3秒前
Jenny发布了新的文献求助30
3秒前
4秒前
请叫我风吹麦浪应助铅笔采纳,获得10
4秒前
5秒前
Ava应助瞿寒采纳,获得30
6秒前
动漫大师发布了新的文献求助10
7秒前
7秒前
晨曦完成签到,获得积分10
8秒前
李富贵完成签到,获得积分20
8秒前
听雪完成签到 ,获得积分10
10秒前
elias发布了新的文献求助10
11秒前
无花果应助云澈采纳,获得10
12秒前
今后应助蛋挞采纳,获得10
12秒前
小酸奶应助晨曦采纳,获得10
12秒前
善学以致用应助藿藿采纳,获得10
12秒前
CipherSage应助从容的皮卡丘采纳,获得10
13秒前
猫抓板发布了新的文献求助10
13秒前
852应助星辰采纳,获得10
15秒前
xiaofenzi完成签到 ,获得积分10
15秒前
初柒完成签到,获得积分20
16秒前
liukang172完成签到,获得积分10
16秒前
bingchem完成签到,获得积分10
16秒前
demoliu发布了新的文献求助10
16秒前
16秒前
肥羊七号完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
夜夜完成签到,获得积分10
20秒前
20秒前
Cactus应助liukang172采纳,获得10
21秒前
NexusExplorer应助吼吼哈哈采纳,获得10
21秒前
乐乐应助Raiden采纳,获得20
21秒前
21秒前
轻松绿旋发布了新的文献求助10
22秒前
hzd_23发布了新的文献求助10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427