清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Efficient optimization design of flue deflectors through parametric surrogate modeling with physics-informed neural networks

计算流体力学 参数统计 替代模型 优化设计 职位(财务) 人工神经网络 物理 实验设计 流量(数学) 近似误差 参数化复杂度 模拟 计算机科学 算法 机械 人工智能 机器学习 统计 数学 经济 财务
作者
Zhen Cao,Kai Liu,Kun Luo,Yuzhou Cheng,Jianren Fan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (12) 被引量:3
标识
DOI:10.1063/5.0180594
摘要

In engineering applications, deflectors play a vital role in regulating the uniformity of flow field distribution in the selective catalytic reduction (SCR) system, and their optimal design is a topic of great concern. However, traditional optimal design methods often suffer from insufficient prediction accuracy or too high computational cost. This paper develops and verifies an efficient and robust parametric surrogate model for SCR systems based on the physics-informed neural networks (PINNs) framework. This study comprises three progressive steps. (1) We predicted the flow field distribution in the original flue based on the PINNs framework and compared the results qualitatively and quantitatively with the traditional computational fluid dynamics (CFD) method. The results show that the maximum relative error of velocity is 12.6%, and the relative error is within 5% in most areas. (2) For the optimal design of the deflector in the SCR system, a parametric surrogate model based on the PINNs framework is developed, and the model inputs include not only the coordinate variables but also the position parameters of the deflector. The accuracy and efficiency of this parametric surrogate model are also compared with the traditional CFD method. (3) Based on the parametric surrogate model developed above, the deflector optimal position for the research object of this study is found through two quantitative indicators (uniformity coefficient and flue gas energy loss). The results demonstrate that the parameterized model based on PINNs can reduce the computational time to about 14% compared to traditional methods. Finally, the sensitivity analysis of the deflector position parameters is carried out. Overall, the results of this study demonstrate that the parametric surrogate model based on the PINNs framework is an efficient and robust tool for system optimization, design, and autonomous control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
铁妹儿完成签到 ,获得积分10
51秒前
归尘应助科研通管家采纳,获得10
59秒前
Akim应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
77发布了新的文献求助10
2分钟前
归尘应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
YepbingCHOI发布了新的文献求助10
3分钟前
Derek完成签到,获得积分0
4分钟前
房天川完成签到 ,获得积分10
4分钟前
竹桃完成签到 ,获得积分10
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
77发布了新的文献求助10
4分钟前
李爱国应助英勇的阑悦采纳,获得10
4分钟前
5分钟前
归尘应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
科研12345完成签到 ,获得积分10
6分钟前
归尘应助科研通管家采纳,获得10
7分钟前
斯文败类应助科研通管家采纳,获得10
7分钟前
7分钟前
77发布了新的文献求助10
7分钟前
7分钟前
田田完成签到 ,获得积分10
7分钟前
可爱的函函应助nancyjcfan采纳,获得10
8分钟前
8分钟前
8分钟前
nancyjcfan发布了新的文献求助10
8分钟前
nancyjcfan完成签到,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
9分钟前
六一儿童节完成签到 ,获得积分10
9分钟前
情怀应助77采纳,获得10
9分钟前
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307460
求助须知:如何正确求助?哪些是违规求助? 2941053
关于积分的说明 8500336
捐赠科研通 2615456
什么是DOI,文献DOI怎么找? 1428912
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648462