Efficient optimization design of flue deflectors through parametric surrogate modeling with physics-informed neural networks

计算流体力学 参数统计 替代模型 优化设计 职位(财务) 人工神经网络 物理 实验设计 流量(数学) 近似误差 参数化复杂度 模拟 计算机科学 算法 机械 人工智能 机器学习 统计 数学 经济 财务
作者
Zhen Cao,Kai Liu,Kun Luo,Yuzhou Cheng,Jianren Fan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (12) 被引量:3
标识
DOI:10.1063/5.0180594
摘要

In engineering applications, deflectors play a vital role in regulating the uniformity of flow field distribution in the selective catalytic reduction (SCR) system, and their optimal design is a topic of great concern. However, traditional optimal design methods often suffer from insufficient prediction accuracy or too high computational cost. This paper develops and verifies an efficient and robust parametric surrogate model for SCR systems based on the physics-informed neural networks (PINNs) framework. This study comprises three progressive steps. (1) We predicted the flow field distribution in the original flue based on the PINNs framework and compared the results qualitatively and quantitatively with the traditional computational fluid dynamics (CFD) method. The results show that the maximum relative error of velocity is 12.6%, and the relative error is within 5% in most areas. (2) For the optimal design of the deflector in the SCR system, a parametric surrogate model based on the PINNs framework is developed, and the model inputs include not only the coordinate variables but also the position parameters of the deflector. The accuracy and efficiency of this parametric surrogate model are also compared with the traditional CFD method. (3) Based on the parametric surrogate model developed above, the deflector optimal position for the research object of this study is found through two quantitative indicators (uniformity coefficient and flue gas energy loss). The results demonstrate that the parameterized model based on PINNs can reduce the computational time to about 14% compared to traditional methods. Finally, the sensitivity analysis of the deflector position parameters is carried out. Overall, the results of this study demonstrate that the parametric surrogate model based on the PINNs framework is an efficient and robust tool for system optimization, design, and autonomous control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
屈懿轩完成签到,获得积分10
1秒前
cttc完成签到,获得积分10
1秒前
6秒前
青衣北风发布了新的文献求助10
6秒前
7秒前
8秒前
Laneyliu发布了新的文献求助10
8秒前
9秒前
小二郎应助shinn采纳,获得10
9秒前
9秒前
科研通AI5应助一朵采纳,获得10
10秒前
暮雪残梅完成签到 ,获得积分10
10秒前
爱啊发布了新的文献求助10
12秒前
糖炒栗子发布了新的文献求助10
13秒前
Carlo完成签到,获得积分10
13秒前
13秒前
直率月亮发布了新的文献求助10
14秒前
武雨寒发布了新的文献求助10
14秒前
清风发布了新的文献求助10
15秒前
I Think发布了新的文献求助10
17秒前
糖炒栗子完成签到,获得积分10
19秒前
wiwi发布了新的文献求助30
19秒前
21秒前
科研小猫关注了科研通微信公众号
22秒前
隐形曼青应助马琛尧采纳,获得10
23秒前
Laneyliu完成签到,获得积分10
24秒前
yx_cheng应助韩凡采纳,获得10
24秒前
拿铁小笼包完成签到,获得积分10
24秒前
24秒前
25秒前
应然忆完成签到 ,获得积分10
26秒前
shinn发布了新的文献求助10
26秒前
田様应助直率月亮采纳,获得10
27秒前
27秒前
27秒前
28秒前
KimJongUn发布了新的文献求助10
29秒前
封闭货车完成签到 ,获得积分10
30秒前
新芝发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517