亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient optimization design of flue deflectors through parametric surrogate modeling with physics-informed neural networks

计算流体力学 参数统计 替代模型 优化设计 职位(财务) 人工神经网络 物理 实验设计 流量(数学) 近似误差 参数化复杂度 模拟 计算机科学 算法 机械 人工智能 机器学习 统计 数学 财务 经济
作者
Zhen Cao,Kai Liu,Kun Luo,Yuzhou Cheng,Jianren Fan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (12) 被引量:3
标识
DOI:10.1063/5.0180594
摘要

In engineering applications, deflectors play a vital role in regulating the uniformity of flow field distribution in the selective catalytic reduction (SCR) system, and their optimal design is a topic of great concern. However, traditional optimal design methods often suffer from insufficient prediction accuracy or too high computational cost. This paper develops and verifies an efficient and robust parametric surrogate model for SCR systems based on the physics-informed neural networks (PINNs) framework. This study comprises three progressive steps. (1) We predicted the flow field distribution in the original flue based on the PINNs framework and compared the results qualitatively and quantitatively with the traditional computational fluid dynamics (CFD) method. The results show that the maximum relative error of velocity is 12.6%, and the relative error is within 5% in most areas. (2) For the optimal design of the deflector in the SCR system, a parametric surrogate model based on the PINNs framework is developed, and the model inputs include not only the coordinate variables but also the position parameters of the deflector. The accuracy and efficiency of this parametric surrogate model are also compared with the traditional CFD method. (3) Based on the parametric surrogate model developed above, the deflector optimal position for the research object of this study is found through two quantitative indicators (uniformity coefficient and flue gas energy loss). The results demonstrate that the parameterized model based on PINNs can reduce the computational time to about 14% compared to traditional methods. Finally, the sensitivity analysis of the deflector position parameters is carried out. Overall, the results of this study demonstrate that the parametric surrogate model based on the PINNs framework is an efficient and robust tool for system optimization, design, and autonomous control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助小智采纳,获得10
2秒前
领导范儿应助ANAN1969采纳,获得10
3秒前
00完成签到,获得积分10
4秒前
6秒前
莫晓岚发布了新的文献求助80
9秒前
14秒前
小智发布了新的文献求助10
20秒前
NexusExplorer应助chenzheng采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
54秒前
Ava应助科研通管家采纳,获得10
54秒前
ceeray23应助科研通管家采纳,获得10
54秒前
59秒前
1分钟前
Chris完成签到 ,获得积分0
1分钟前
星启完成签到 ,获得积分10
1分钟前
01完成签到 ,获得积分10
1分钟前
小橘子吃傻子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lucky发布了新的文献求助10
1分钟前
1分钟前
山山完成签到,获得积分20
1分钟前
山山发布了新的文献求助10
1分钟前
1分钟前
苏苏发布了新的文献求助10
1分钟前
激情的代曼完成签到 ,获得积分10
1分钟前
光合作用完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
爆米花应助小智采纳,获得10
1分钟前
1分钟前
浮游应助激情的代曼采纳,获得10
1分钟前
aaron完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小龙完成签到,获得积分10
2分钟前
斯文败类应助科研猫头鹰采纳,获得10
2分钟前
小智发布了新的文献求助10
2分钟前
nxy完成签到 ,获得积分10
2分钟前
Owen应助EaRnn采纳,获得10
2分钟前
玫瑰遇上奶油完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413082
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122792
捐赠科研通 4445232
什么是DOI,文献DOI怎么找? 2439148
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408578