Efficient optimization design of flue deflectors through parametric surrogate modeling with physics-informed neural networks

计算流体力学 参数统计 替代模型 优化设计 职位(财务) 人工神经网络 物理 实验设计 流量(数学) 近似误差 参数化复杂度 模拟 计算机科学 算法 机械 人工智能 机器学习 统计 数学 财务 经济
作者
Zhen Cao,Kai Liu,Kun Luo,Yuzhou Cheng,Jianren Fan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (12) 被引量:6
标识
DOI:10.1063/5.0180594
摘要

In engineering applications, deflectors play a vital role in regulating the uniformity of flow field distribution in the selective catalytic reduction (SCR) system, and their optimal design is a topic of great concern. However, traditional optimal design methods often suffer from insufficient prediction accuracy or too high computational cost. This paper develops and verifies an efficient and robust parametric surrogate model for SCR systems based on the physics-informed neural networks (PINNs) framework. This study comprises three progressive steps. (1) We predicted the flow field distribution in the original flue based on the PINNs framework and compared the results qualitatively and quantitatively with the traditional computational fluid dynamics (CFD) method. The results show that the maximum relative error of velocity is 12.6%, and the relative error is within 5% in most areas. (2) For the optimal design of the deflector in the SCR system, a parametric surrogate model based on the PINNs framework is developed, and the model inputs include not only the coordinate variables but also the position parameters of the deflector. The accuracy and efficiency of this parametric surrogate model are also compared with the traditional CFD method. (3) Based on the parametric surrogate model developed above, the deflector optimal position for the research object of this study is found through two quantitative indicators (uniformity coefficient and flue gas energy loss). The results demonstrate that the parameterized model based on PINNs can reduce the computational time to about 14% compared to traditional methods. Finally, the sensitivity analysis of the deflector position parameters is carried out. Overall, the results of this study demonstrate that the parametric surrogate model based on the PINNs framework is an efficient and robust tool for system optimization, design, and autonomous control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Diss完成签到,获得积分10
1秒前
单采白完成签到,获得积分10
1秒前
林希希发布了新的文献求助10
2秒前
Ylyyyyyy发布了新的文献求助10
2秒前
2秒前
善学以致用应助宝铭YUAN采纳,获得10
4秒前
丘比特应助llg采纳,获得10
5秒前
果冻完成签到,获得积分10
5秒前
小二郎应助liherong采纳,获得10
6秒前
6秒前
7秒前
蓝胖子想要两颗西柚-完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
一战成硕发布了新的文献求助10
8秒前
配言完成签到,获得积分10
9秒前
珊珊来迟完成签到,获得积分10
10秒前
leaves发布了新的文献求助10
11秒前
12秒前
楠枫发布了新的文献求助10
12秒前
paopao完成签到,获得积分10
12秒前
吕大本事发布了新的文献求助10
12秒前
CL完成签到,获得积分10
12秒前
Orange应助我想毕业采纳,获得10
12秒前
星辰大海应助fsx524402采纳,获得30
13秒前
15秒前
16秒前
16秒前
16秒前
17秒前
19秒前
600发布了新的文献求助10
19秒前
20秒前
20秒前
林希希发布了新的文献求助10
21秒前
21秒前
JamesPei应助流星噬月采纳,获得10
22秒前
我想毕业发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718