Efficient optimization design of flue deflectors through parametric surrogate modeling with physics-informed neural networks

计算流体力学 参数统计 替代模型 优化设计 职位(财务) 人工神经网络 物理 实验设计 流量(数学) 近似误差 参数化复杂度 模拟 计算机科学 算法 机械 人工智能 机器学习 统计 数学 经济 财务
作者
Zhen Cao,Kai Liu,Kun Luo,Yuzhou Cheng,Jianren Fan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (12) 被引量:3
标识
DOI:10.1063/5.0180594
摘要

In engineering applications, deflectors play a vital role in regulating the uniformity of flow field distribution in the selective catalytic reduction (SCR) system, and their optimal design is a topic of great concern. However, traditional optimal design methods often suffer from insufficient prediction accuracy or too high computational cost. This paper develops and verifies an efficient and robust parametric surrogate model for SCR systems based on the physics-informed neural networks (PINNs) framework. This study comprises three progressive steps. (1) We predicted the flow field distribution in the original flue based on the PINNs framework and compared the results qualitatively and quantitatively with the traditional computational fluid dynamics (CFD) method. The results show that the maximum relative error of velocity is 12.6%, and the relative error is within 5% in most areas. (2) For the optimal design of the deflector in the SCR system, a parametric surrogate model based on the PINNs framework is developed, and the model inputs include not only the coordinate variables but also the position parameters of the deflector. The accuracy and efficiency of this parametric surrogate model are also compared with the traditional CFD method. (3) Based on the parametric surrogate model developed above, the deflector optimal position for the research object of this study is found through two quantitative indicators (uniformity coefficient and flue gas energy loss). The results demonstrate that the parameterized model based on PINNs can reduce the computational time to about 14% compared to traditional methods. Finally, the sensitivity analysis of the deflector position parameters is carried out. Overall, the results of this study demonstrate that the parametric surrogate model based on the PINNs framework is an efficient and robust tool for system optimization, design, and autonomous control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyl完成签到,获得积分10
刚刚
dery发布了新的文献求助10
1秒前
雨愈发布了新的文献求助10
2秒前
今后应助海绵宝宝采纳,获得10
2秒前
哈喽小雪发布了新的文献求助10
2秒前
shelemi发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
5秒前
6秒前
Echo完成签到,获得积分0
7秒前
7秒前
完美世界应助云朵邮差采纳,获得30
8秒前
8秒前
jerry完成签到,获得积分10
8秒前
shi发布了新的文献求助10
8秒前
hi关闭了hi文献求助
9秒前
学分完成签到 ,获得积分10
9秒前
爱吃饼干的土拨鼠完成签到,获得积分10
9秒前
10秒前
哈喽小雪完成签到,获得积分10
10秒前
美丽梦桃发布了新的文献求助10
11秒前
Assassion发布了新的文献求助10
11秒前
mytttttttt发布了新的文献求助10
11秒前
wop111应助哒哒哒采纳,获得20
11秒前
hzr发布了新的文献求助10
12秒前
外向幻悲完成签到 ,获得积分10
12秒前
12秒前
充电宝应助没所谓采纳,获得10
12秒前
12秒前
zwd发布了新的文献求助10
13秒前
肾宝发布了新的文献求助10
14秒前
冷静完成签到,获得积分10
14秒前
15秒前
Lucas应助samllcloud采纳,获得10
15秒前
16秒前
18秒前
科研通AI2S应助yang阳阳ing采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942283
求助须知:如何正确求助?哪些是违规求助? 4208047
关于积分的说明 13080299
捐赠科研通 3987041
什么是DOI,文献DOI怎么找? 2182896
邀请新用户注册赠送积分活动 1198553
关于科研通互助平台的介绍 1110857