AC R-CNN: Pixelwise Instance Segmentation Model for Agrocybe cylindracea Cap

分割 人工智能 计算机科学 模式识别(心理学) 特征(语言学) 哲学 语言学
作者
Hua Yin,Shenglan Yang,Wenhao Cheng,Wei Quan,Yinglong Wang,Yilu Xu
出处
期刊:Agronomy [MDPI AG]
卷期号:14 (1): 77-77 被引量:1
标识
DOI:10.3390/agronomy14010077
摘要

The popularity of Agrocybe cylindracea is increasing due to its unique flavor and nutritional value. The Agrocybe cylindracea cap is a key aspect of the growth process, and high-throughput observation of cap traits in greenhouses by machine vision is a future development trend of smart agriculture. Nevertheless, the segmentation of the Agrocybe cylindracea cap is extremely challenging due to its similarity in color to the rest of the mushroom and the occurrence of mutual occlusion, presenting a major obstacle for the effective application of automation technology. To address this issue, we propose an improved instance segmentation network called Agrocybe cylindracea R-CNN (AC R-CNN) based on the Mask R-CNN model. AC R-CNN incorporates hybrid dilated convolution (HDC) and attention modules into the feature extraction backbone network to enhance the segmentation of adhesive mushroom caps and focus on the segmentation objects. Furthermore, the Mask Branch module is replaced with PointRend to improve the network’s segmentation accuracy at the edges of the mushroom caps. These modifications effectively solve the problems of the original algorithm’s inability to segment adhesive Agrocybe cylindracea caps and low accuracy in edge segmentation. The experimental results demonstrate that AC R-CNN outperforms the original Mask R-CNN in terms of segmentation performance. The average precision (AP) is improved by 12.1%, and the F1 score is improved by 13.7%. Additionally, AC R-CNN outperforms other networks such as Mask Scoring R-CNN and BlendMask. Therefore, the research findings of this study can meet the high-precision segmentation requirements of Agrocybe cylindracea caps and lay a theoretical foundation for the development of subsequent intelligent phenotyping devices and harvesting robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗喵完成签到 ,获得积分10
1秒前
5High_0完成签到 ,获得积分10
2秒前
2秒前
Young完成签到,获得积分10
3秒前
慕冰蝶发布了新的文献求助10
3秒前
123完成签到 ,获得积分0
3秒前
4秒前
酸奶巧克力完成签到,获得积分10
4秒前
dfggb完成签到,获得积分20
6秒前
精明觅海完成签到,获得积分10
6秒前
Faust发布了新的文献求助10
6秒前
Lucas应助YOUKOU采纳,获得10
6秒前
翩若惊鸿婉若游龙完成签到,获得积分20
7秒前
9秒前
wsh发布了新的文献求助10
9秒前
烟花应助Miracle采纳,获得10
10秒前
醋包plz发布了新的文献求助10
10秒前
安静的翼完成签到,获得积分10
10秒前
安静的翼发布了新的文献求助10
15秒前
15秒前
彩色的恋风完成签到,获得积分10
16秒前
Akim应助wsh采纳,获得10
17秒前
19秒前
夏青荷发布了新的文献求助10
23秒前
包子牛奶完成签到,获得积分10
24秒前
孙卫平发布了新的文献求助10
25秒前
纪元龙完成签到,获得积分10
26秒前
Dawn完成签到,获得积分10
28秒前
32秒前
34秒前
一根藤完成签到,获得积分10
34秒前
上官若男应助怡然灵珊采纳,获得10
37秒前
雪白的灵竹完成签到,获得积分10
38秒前
aDou完成签到 ,获得积分10
39秒前
40秒前
付银薇完成签到,获得积分10
41秒前
留胡子的画板完成签到,获得积分10
45秒前
Miracle发布了新的文献求助10
46秒前
wanci应助科研通管家采纳,获得10
47秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152043
求助须知:如何正确求助?哪些是违规求助? 2803339
关于积分的说明 7853343
捐赠科研通 2460804
什么是DOI,文献DOI怎么找? 1310058
科研通“疑难数据库(出版商)”最低求助积分说明 629097
版权声明 601765