AC R-CNN: Pixelwise Instance Segmentation Model for Agrocybe cylindracea Cap

分割 人工智能 计算机科学 模式识别(心理学) 特征(语言学) 语言学 哲学
作者
Hua Yin,Shenglan Yang,Wenhao Cheng,Wei Quan,Yinglong Wang,Yilu Xu
出处
期刊:Agronomy [MDPI AG]
卷期号:14 (1): 77-77 被引量:1
标识
DOI:10.3390/agronomy14010077
摘要

The popularity of Agrocybe cylindracea is increasing due to its unique flavor and nutritional value. The Agrocybe cylindracea cap is a key aspect of the growth process, and high-throughput observation of cap traits in greenhouses by machine vision is a future development trend of smart agriculture. Nevertheless, the segmentation of the Agrocybe cylindracea cap is extremely challenging due to its similarity in color to the rest of the mushroom and the occurrence of mutual occlusion, presenting a major obstacle for the effective application of automation technology. To address this issue, we propose an improved instance segmentation network called Agrocybe cylindracea R-CNN (AC R-CNN) based on the Mask R-CNN model. AC R-CNN incorporates hybrid dilated convolution (HDC) and attention modules into the feature extraction backbone network to enhance the segmentation of adhesive mushroom caps and focus on the segmentation objects. Furthermore, the Mask Branch module is replaced with PointRend to improve the network’s segmentation accuracy at the edges of the mushroom caps. These modifications effectively solve the problems of the original algorithm’s inability to segment adhesive Agrocybe cylindracea caps and low accuracy in edge segmentation. The experimental results demonstrate that AC R-CNN outperforms the original Mask R-CNN in terms of segmentation performance. The average precision (AP) is improved by 12.1%, and the F1 score is improved by 13.7%. Additionally, AC R-CNN outperforms other networks such as Mask Scoring R-CNN and BlendMask. Therefore, the research findings of this study can meet the high-precision segmentation requirements of Agrocybe cylindracea caps and lay a theoretical foundation for the development of subsequent intelligent phenotyping devices and harvesting robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自由的信仰完成签到,获得积分10
刚刚
纯情的远山完成签到,获得积分10
刚刚
科研通AI6应助完美元采纳,获得10
1秒前
limi完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
今天也在板砖完成签到,获得积分10
1秒前
小蘑菇应助维尼采纳,获得10
1秒前
努力学习完成签到,获得积分10
2秒前
Akim应助幽默书瑶采纳,获得10
2秒前
赘婿应助文艺的冬卉采纳,获得10
2秒前
重要语薇完成签到,获得积分10
2秒前
小小怪完成签到 ,获得积分10
2秒前
3秒前
happynewyear发布了新的文献求助30
4秒前
高兴的冬天完成签到,获得积分10
4秒前
Coaly完成签到,获得积分10
5秒前
时荒发布了新的文献求助10
5秒前
bobo完成签到,获得积分10
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
min20210429发布了新的文献求助10
7秒前
zhuluosheng完成签到,获得积分10
7秒前
TheMonster完成签到,获得积分10
7秒前
hatim完成签到,获得积分10
7秒前
晴天霹雳3732完成签到,获得积分10
8秒前
Jason发布了新的文献求助10
9秒前
9秒前
菠萝蜜完成签到,获得积分10
10秒前
天天快乐应助时荒采纳,获得10
10秒前
老迟到的小丸子完成签到,获得积分10
10秒前
雨的印记完成签到,获得积分10
11秒前
研友_nPPERn完成签到,获得积分10
11秒前
跳跃的大碗完成签到,获得积分10
11秒前
Richardisme完成签到,获得积分10
11秒前
LIU完成签到,获得积分10
11秒前
12秒前
wanci应助香蕉梨愁采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645317
求助须知:如何正确求助?哪些是违规求助? 4768461
关于积分的说明 15028063
捐赠科研通 4803918
什么是DOI,文献DOI怎么找? 2568536
邀请新用户注册赠送积分活动 1525881
关于科研通互助平台的介绍 1485508