Kelvin wake detection from large-scale optical imagery using simulated data trained deep neural network

唤醒 人工神经网络 比例(比率) 遥感 环境科学 气象学 人工智能 地质学 计算机科学 工程类 航空航天工程 地图学 物理 地理
作者
Yingfei Liu,Jun Zhao
出处
期刊:Ocean Engineering [Elsevier]
卷期号:297: 117075-117075
标识
DOI:10.1016/j.oceaneng.2024.117075
摘要

Detecting ship wakes is essential for locating moving vessels at sea. Of the various wake types, Kelvin wakes are particularly intriguing because of the vital information they convey about ships. However, identifying Kelvin wakes is challenging due to their expansive planar distributions and their variable brightness and forms. This paper introduces a deep neural network-based technique specifically tailored for detecting Kelvin wakes in large-scale, high-resolution optical images. After distinguishing between land and water, the entire water region of the image was segmented into overlapping sub-images. GoogLeNet was then employed to differentiate between Kelvin wakes and natural sea surfaces within each sub-image. Regions exhibiting Kelvin wakes were subsequently identified by combining the wake-classified sub-images. Given the limited diversity of available Kelvin wake samples, the training dataset merged true and simulated Kelvin wake images, which acted as positive samples for the deep neural network. The proposed method, when applied to high-resolution optical images, showcased outstanding Kelvin wake detection capabilities, achieving a recall rate of 94.0% and a precision of 70.8%. When detection was limited to the vicinity of ship hulls, the recall, precision, overall accuracy, and specificity achieved remarkable rates of 94.0%, 70.8%, 92.3%, and 94.1% respectively. Furthermore, this research delved into the influence of training samples and input channels on the detection accuracy of wakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mask完成签到,获得积分10
1秒前
www发布了新的文献求助20
1秒前
1秒前
1秒前
2秒前
2秒前
青衣北风完成签到,获得积分10
2秒前
2秒前
妖精完成签到 ,获得积分10
2秒前
小淼发布了新的文献求助10
3秒前
3秒前
万能图书馆应助mudiboyang采纳,获得10
3秒前
3秒前
大方的香菱完成签到 ,获得积分10
4秒前
Fremerty完成签到,获得积分10
4秒前
爆米花应助阳光的丹雪采纳,获得10
4秒前
彭于晏应助小龄采纳,获得10
4秒前
zahahaha完成签到,获得积分10
5秒前
Dke关注了科研通微信公众号
5秒前
5秒前
科研通AI6应助平常的夏天采纳,获得30
5秒前
6秒前
Dke关注了科研通微信公众号
6秒前
难过的谷芹应助bk采纳,获得10
6秒前
海伯利安发布了新的文献求助10
6秒前
melone完成签到,获得积分10
6秒前
正好发布了新的文献求助10
7秒前
7秒前
烟花应助jou采纳,获得10
7秒前
7秒前
8秒前
8秒前
上官无心发布了新的文献求助10
8秒前
张世瑞发布了新的文献求助10
9秒前
9秒前
9秒前
gqfqg发布了新的文献求助10
9秒前
9秒前
9秒前
陈星翰完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316721
求助须知:如何正确求助?哪些是违规求助? 4459161
关于积分的说明 13873955
捐赠科研通 4349159
什么是DOI,文献DOI怎么找? 2388571
邀请新用户注册赠送积分活动 1382817
关于科研通互助平台的介绍 1352144