Kelvin wake detection from large-scale optical imagery using simulated data trained deep neural network

唤醒 人工神经网络 比例(比率) 遥感 环境科学 气象学 人工智能 地质学 计算机科学 工程类 航空航天工程 地图学 物理 地理
作者
Yingfei Liu,Jun Zhao
出处
期刊:Ocean Engineering [Elsevier]
卷期号:297: 117075-117075
标识
DOI:10.1016/j.oceaneng.2024.117075
摘要

Detecting ship wakes is essential for locating moving vessels at sea. Of the various wake types, Kelvin wakes are particularly intriguing because of the vital information they convey about ships. However, identifying Kelvin wakes is challenging due to their expansive planar distributions and their variable brightness and forms. This paper introduces a deep neural network-based technique specifically tailored for detecting Kelvin wakes in large-scale, high-resolution optical images. After distinguishing between land and water, the entire water region of the image was segmented into overlapping sub-images. GoogLeNet was then employed to differentiate between Kelvin wakes and natural sea surfaces within each sub-image. Regions exhibiting Kelvin wakes were subsequently identified by combining the wake-classified sub-images. Given the limited diversity of available Kelvin wake samples, the training dataset merged true and simulated Kelvin wake images, which acted as positive samples for the deep neural network. The proposed method, when applied to high-resolution optical images, showcased outstanding Kelvin wake detection capabilities, achieving a recall rate of 94.0% and a precision of 70.8%. When detection was limited to the vicinity of ship hulls, the recall, precision, overall accuracy, and specificity achieved remarkable rates of 94.0%, 70.8%, 92.3%, and 94.1% respectively. Furthermore, this research delved into the influence of training samples and input channels on the detection accuracy of wakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
kexing发布了新的文献求助10
1秒前
科目三应助欢呼的海采纳,获得10
2秒前
jy应助科研通管家采纳,获得30
2秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
太阳发布了新的文献求助10
3秒前
LE完成签到,获得积分10
5秒前
专注乐巧发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
悦悦发布了新的文献求助10
7秒前
liwei发布了新的文献求助10
7秒前
从容的惋庭应助谢书南采纳,获得10
7秒前
长歌完成签到 ,获得积分10
8秒前
8秒前
8秒前
共享精神应助云云采纳,获得10
8秒前
8秒前
能干的幻然完成签到,获得积分10
9秒前
10秒前
常泽洋122完成签到,获得积分10
10秒前
joyce发布了新的文献求助10
10秒前
10秒前
trial发布了新的文献求助10
11秒前
CodeCraft应助Three采纳,获得10
11秒前
11秒前
健忘的老姆完成签到,获得积分10
11秒前
gslscuer完成签到,获得积分10
12秒前
12秒前
Liu发布了新的文献求助10
12秒前
12秒前
曾经忘幽完成签到,获得积分10
13秒前
ANDRT完成签到,获得积分20
13秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119837
求助须知:如何正确求助?哪些是违规求助? 2770280
关于积分的说明 7703883
捐赠科研通 2425650
什么是DOI,文献DOI怎么找? 1288160
科研通“疑难数据库(出版商)”最低求助积分说明 620913
版权声明 599970