SVMD-TF-QS: An efficient and novel hybrid methodology for the wind speed prediction

计算机科学 人工智能 机器学习 数据挖掘
作者
Srihari Parri,Kiran Teeparthi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123516-123516 被引量:10
标识
DOI:10.1016/j.eswa.2024.123516
摘要

Wind power is gaining significant attention as a renewable and environmentally friendly energy source. However, accurate forecasting of wind speed poses challenges due to its inherent variability and stochastic nature. To address this issue, a novel hybrid model (SVMD-TF-QS) for wind speed prediction (WSP) is proposed in this study. The model combines successive variational mode decomposition (SVMD) with a Transformer (TF) based model that incorporates a novel query selection (QS) mechanism. The SVMD component of the hybrid model offers several improvements, including enhanced mode extraction, adaptive mode determination, robustness against initial values of center frequencies, and improved computational efficiency. By decomposing the wind speed data using SVMD, the transformed data is then fed into the TF-QS model. The proposed approach effectively combines the benefits of the QS mechanism and the Transformer model to accurately predict wind speed while minimizing computational load. This is achieved by introducing a deterministic algorithm within the QS mechanism, which computes a sparse approximation of the attention matrix used in the Transformer model. This further enhances the predictive capabilities of the hybrid model. To evaluate its performance and generalization capability, extensive assessments are conducted using data from two wind farms located in Leicester and Portland. The assessments cover various time periods, including 5 min, 10 min, 15 min, 30 min, 1 h, and 2 h WSP intervals. The results of this study provide robust evidence supporting the effectiveness of the proposed hybrid model in WSP for the diverse wind farms and scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助大鲟采纳,获得10
1秒前
今后应助廾匸采纳,获得10
1秒前
堪冥完成签到,获得积分10
3秒前
Hayat发布了新的文献求助30
3秒前
苦瓜完成签到,获得积分10
4秒前
打打应助大鲟采纳,获得10
4秒前
siriuslee99发布了新的文献求助10
5秒前
加油少年完成签到,获得积分10
6秒前
安宇完成签到,获得积分10
6秒前
6秒前
崔风机给崔风机的求助进行了留言
7秒前
8秒前
大个应助聪慧小蝴蝶采纳,获得10
9秒前
9秒前
深情安青应助大鲟采纳,获得10
9秒前
随机昵称发布了新的文献求助10
11秒前
12秒前
一一发布了新的文献求助10
13秒前
Ava应助路宝采纳,获得10
13秒前
14秒前
墨殇璃完成签到,获得积分10
14秒前
社会主义接班人完成签到 ,获得积分10
14秒前
由富完成签到,获得积分10
15秒前
DNAdamage发布了新的文献求助10
15秒前
iNk应助zhang005on采纳,获得10
16秒前
烟花应助kangjie123采纳,获得10
16秒前
dyc238100完成签到,获得积分10
16秒前
16秒前
17秒前
乐乐应助AYEFORBIDER采纳,获得10
17秒前
dimples完成签到 ,获得积分10
17秒前
顾矜应助Deceiver采纳,获得10
19秒前
19秒前
廾匸发布了新的文献求助10
19秒前
20秒前
wyd发布了新的文献求助10
20秒前
KRYSTAL完成签到,获得积分10
21秒前
CipherSage应助Iris采纳,获得30
22秒前
22秒前
毛毛弟完成签到 ,获得积分10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759143
求助须知:如何正确求助?哪些是违规求助? 3302211
关于积分的说明 10121437
捐赠科研通 3016595
什么是DOI,文献DOI怎么找? 1656540
邀请新用户注册赠送积分活动 790536
科研通“疑难数据库(出版商)”最低求助积分说明 753886