同质结
催化作用
电场
分解水
材料科学
化学工程
领域(数学)
纳米技术
化学
光电子学
工程类
物理
数学
有机化学
异质结
量子力学
光催化
纯数学
作者
Yanxin Li,Zhichao Hao,Ruikai Wang,Guangyao Wang,Haiyan Li,Can Li,Chenghui Xia,Bohua Dong,Cao Lu
标识
DOI:10.1016/j.cej.2024.149797
摘要
LaFeO3 (LFO), a typical p-type semiconductor, is considered as a promising material for photoelectric conversion because of its flexible composition and structure. However, its severe photogenerated carrier recombination and surface reaction kinetic hysteresis greatly limit its application in photoelectrochemistry (PEC) water splitting. Here, for the first time, a LFO p-p-type homojunction (Cu-LFO/Ni-LFO) formed by Cu-doped LFO and Ni-doped LFO is reported. Experimental investigation and density functional theory (DFT) calculations reveal that Cu and Ni doping forms a built-in electric field directed from Ni-LFO to Cu-LFO, which effectively improves the carrier separation and transport efficiency. The comparable crystal structure at the interface minimizes the photogenerated carrier recombination due to the interface lattice mismatch. In addition, Ni-LFO in contact with the electrolyte served as a co-catalyst like role in this PEC system, improving the kinetic properties of the surface reaction significantly by optimizing the adsorption and desorption of H2O molecules and HER reaction intermediates on the Fe in the active center whilst significantly reducing the energy barrier. As a result, the photocurrent density of the Cu-LFO/Ni-LFO photocathode reaches 5.94 mA cm2, which is 11 times higher than that of Cu-LFO and surpasses all LFO-based photocathodes reported so far. The LFO-based p-p homo-junction synthesized in this work is instructive for improving the carrier separation efficiency and surface reaction kinetics of LFO.
科研通智能强力驱动
Strongly Powered by AbleSci AI