Prediction of Anti-rheumatoid Arthritis Natural Products of Xanthocerais Lignum Based on LC-MS and Artificial Intelligence

支持向量机 类风湿性关节炎 随机森林 机器学习 药物发现 深度学习 理论(学习稳定性) 人工智能 计算机科学 医学 化学 内科学 生物化学
作者
Hao Qian,Zhibing Xiao,Lei Su,Yaqiong Yang,XiangYang Tian,Xiaoqin Wang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:27 被引量:1
标识
DOI:10.2174/0113862073282138240116112348
摘要

Aims: Employing the technique of liquid chromatography-mass spectrometry (LCMS) in conjunction with artificial intelligence (AI) technology to predict and screen for antirheumatoid arthritis (RA) active compounds in Xanthocerais lignum. Background: Natural products have become an important source of new drug discovery. RA is a chronic autoimmune disease characterized by joint inflammation and systemic inflammation. Although there are many drugs available for the treatment of RA, they still have many side effects and limitations. Therefore, finding more effective and safer natural products for the treatment of RA has become an important issue. Methods: In this study, a collection of inhibitors targeting RA-related specific targets was gathered. Machine learning models and deep learning models were constructed using these inhibitors. The performance of the models was evaluated using a test set and ten-fold cross-validation, and the most optimal model was selected for integration. A total of five commonly used machine learning algorithms (logistic regression, k-nearest neighbors, support vector machines, random forest, XGBoost) and one deep learning algorithm (GCN) were employed in this research. Subsequently, a Xanthocerais lignum compound library was established through HPLC-Q-Exactive- MS analysis and relevant literature. The integrated model was utilized to predict and screen for anti-RA active compounds in Xanthocerais lignum. Results: The integrated model exhibited an AUC greater than 0.94 for all target datasets, demonstrating improved stability and accuracy compared to individual models. This enhancement enables better activity prediction for unknown compounds. By employing the integrated model, the activity of 69 identified compounds in Xanthocerais lignum was predicted. The results indicated that isorhamnetin-3-O-glucoside, myricetin, rutinum, cinnamtannin B1, and dihydromyricetin exhibited inhibitory effects on multiple targets. Furthermore, myricetin and dihydromyricetin were found to have relatively higher relative abundances in Xanthocerais lignum, suggesting that they may serve as the primary active components contributing to its anti-RA effects. Conclusion: In this study, we utilized AI technology to learn from a large number of compounds and predict the activity of natural products from Xanthocerais lignum on specific targets. By combining AI technology and the LC-MS approach, rapid screening and prediction of the activity of natural products based on specific targets can be achieved, significantly enhancing the efficiency of discovering new bioactive molecules from medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的泥猴桃完成签到 ,获得积分10
2秒前
8秒前
小蘑菇应助xhy采纳,获得10
11秒前
夏姬宁静完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
桂鱼完成签到 ,获得积分10
19秒前
Cell完成签到 ,获得积分10
25秒前
asdwind完成签到,获得积分10
27秒前
SDS完成签到 ,获得积分10
35秒前
甜甜圈完成签到 ,获得积分10
39秒前
linci完成签到,获得积分10
40秒前
白凌风完成签到 ,获得积分10
43秒前
45秒前
511完成签到 ,获得积分10
47秒前
Canma完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助10
53秒前
迷人绿柏完成签到 ,获得积分10
55秒前
fxy完成签到 ,获得积分10
59秒前
ycc完成签到,获得积分10
1分钟前
popo6150完成签到 ,获得积分10
1分钟前
李健的粉丝团团长应助xxl3采纳,获得10
1分钟前
王波完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
tang完成签到,获得积分10
1分钟前
qianci2009完成签到,获得积分0
1分钟前
三杠完成签到 ,获得积分10
1分钟前
康康完成签到 ,获得积分10
1分钟前
Docsiwen完成签到 ,获得积分10
1分钟前
拼搏的羊青完成签到,获得积分10
1分钟前
cinnamonbrd完成签到,获得积分10
1分钟前
燕儿完成签到 ,获得积分10
1分钟前
jintian完成签到 ,获得积分10
1分钟前
胡杨树2006完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
坦率雪枫完成签到 ,获得积分10
2分钟前
2分钟前
嗯嗯完成签到 ,获得积分10
2分钟前
2分钟前
23333完成签到,获得积分10
2分钟前
xxl3发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910669
求助须知:如何正确求助?哪些是违规求助? 4186400
关于积分的说明 12999449
捐赠科研通 3953919
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186604
关于科研通互助平台的介绍 1093837