Prediction of Anti-rheumatoid Arthritis Natural Products of Xanthocerais Lignum Based on LC-MS and Artificial Intelligence

支持向量机 类风湿性关节炎 随机森林 机器学习 药物发现 深度学习 理论(学习稳定性) 人工智能 计算机科学 医学 化学 内科学 生物化学
作者
Hao Qian,Zhibing Xiao,Lei Su,Yaqiong Yang,XiangYang Tian,Xiaoqin Wang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:27
标识
DOI:10.2174/0113862073282138240116112348
摘要

Aims: Employing the technique of liquid chromatography-mass spectrometry (LCMS) in conjunction with artificial intelligence (AI) technology to predict and screen for antirheumatoid arthritis (RA) active compounds in Xanthocerais lignum. Background: Natural products have become an important source of new drug discovery. RA is a chronic autoimmune disease characterized by joint inflammation and systemic inflammation. Although there are many drugs available for the treatment of RA, they still have many side effects and limitations. Therefore, finding more effective and safer natural products for the treatment of RA has become an important issue. Methods: In this study, a collection of inhibitors targeting RA-related specific targets was gathered. Machine learning models and deep learning models were constructed using these inhibitors. The performance of the models was evaluated using a test set and ten-fold cross-validation, and the most optimal model was selected for integration. A total of five commonly used machine learning algorithms (logistic regression, k-nearest neighbors, support vector machines, random forest, XGBoost) and one deep learning algorithm (GCN) were employed in this research. Subsequently, a Xanthocerais lignum compound library was established through HPLC-Q-Exactive- MS analysis and relevant literature. The integrated model was utilized to predict and screen for anti-RA active compounds in Xanthocerais lignum. Results: The integrated model exhibited an AUC greater than 0.94 for all target datasets, demonstrating improved stability and accuracy compared to individual models. This enhancement enables better activity prediction for unknown compounds. By employing the integrated model, the activity of 69 identified compounds in Xanthocerais lignum was predicted. The results indicated that isorhamnetin-3-O-glucoside, myricetin, rutinum, cinnamtannin B1, and dihydromyricetin exhibited inhibitory effects on multiple targets. Furthermore, myricetin and dihydromyricetin were found to have relatively higher relative abundances in Xanthocerais lignum, suggesting that they may serve as the primary active components contributing to its anti-RA effects. Conclusion: In this study, we utilized AI technology to learn from a large number of compounds and predict the activity of natural products from Xanthocerais lignum on specific targets. By combining AI technology and the LC-MS approach, rapid screening and prediction of the activity of natural products based on specific targets can be achieved, significantly enhancing the efficiency of discovering new bioactive molecules from medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自转无风发布了新的文献求助10
3秒前
luckype完成签到,获得积分20
4秒前
4秒前
5秒前
瑶咕隆咚完成签到,获得积分10
5秒前
5秒前
8秒前
来碗孟婆汤完成签到,获得积分10
8秒前
皮皮虾完成签到 ,获得积分10
9秒前
慕容迎松完成签到,获得积分10
10秒前
春水煎茶发布了新的文献求助30
10秒前
慕容迎松发布了新的文献求助10
15秒前
15秒前
柯善若发布了新的文献求助10
15秒前
天天快乐应助曹帅采纳,获得10
15秒前
良月一十完成签到,获得积分10
15秒前
zee完成签到,获得积分10
15秒前
求助123发布了新的文献求助10
17秒前
GY完成签到,获得积分20
18秒前
19秒前
梅花易数完成签到,获得积分10
20秒前
TX完成签到,获得积分10
20秒前
20秒前
快乐寄风发布了新的文献求助10
21秒前
清爽的冰凡完成签到 ,获得积分10
21秒前
GY发布了新的文献求助10
21秒前
在水一方应助QYW采纳,获得10
22秒前
hehe完成签到,获得积分10
22秒前
23秒前
米奇妙妙虫完成签到,获得积分10
24秒前
24秒前
24秒前
小郭发布了新的文献求助20
25秒前
26秒前
28秒前
爱听歌完成签到,获得积分10
28秒前
机智的小懒虫完成签到 ,获得积分10
29秒前
29秒前
29秒前
_hcv完成签到,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023