Prediction of Anti-rheumatoid Arthritis Natural Products of Xanthocerais Lignum Based on LC-MS and Artificial Intelligence

支持向量机 类风湿性关节炎 随机森林 机器学习 药物发现 深度学习 理论(学习稳定性) 人工智能 计算机科学 医学 化学 内科学 生物化学
作者
Hao Qian,Zhibing Xiao,Lei Su,Yaqiong Yang,XiangYang Tian,Xiaoqin Wang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:27
标识
DOI:10.2174/0113862073282138240116112348
摘要

Aims: Employing the technique of liquid chromatography-mass spectrometry (LCMS) in conjunction with artificial intelligence (AI) technology to predict and screen for antirheumatoid arthritis (RA) active compounds in Xanthocerais lignum. Background: Natural products have become an important source of new drug discovery. RA is a chronic autoimmune disease characterized by joint inflammation and systemic inflammation. Although there are many drugs available for the treatment of RA, they still have many side effects and limitations. Therefore, finding more effective and safer natural products for the treatment of RA has become an important issue. Methods: In this study, a collection of inhibitors targeting RA-related specific targets was gathered. Machine learning models and deep learning models were constructed using these inhibitors. The performance of the models was evaluated using a test set and ten-fold cross-validation, and the most optimal model was selected for integration. A total of five commonly used machine learning algorithms (logistic regression, k-nearest neighbors, support vector machines, random forest, XGBoost) and one deep learning algorithm (GCN) were employed in this research. Subsequently, a Xanthocerais lignum compound library was established through HPLC-Q-Exactive- MS analysis and relevant literature. The integrated model was utilized to predict and screen for anti-RA active compounds in Xanthocerais lignum. Results: The integrated model exhibited an AUC greater than 0.94 for all target datasets, demonstrating improved stability and accuracy compared to individual models. This enhancement enables better activity prediction for unknown compounds. By employing the integrated model, the activity of 69 identified compounds in Xanthocerais lignum was predicted. The results indicated that isorhamnetin-3-O-glucoside, myricetin, rutinum, cinnamtannin B1, and dihydromyricetin exhibited inhibitory effects on multiple targets. Furthermore, myricetin and dihydromyricetin were found to have relatively higher relative abundances in Xanthocerais lignum, suggesting that they may serve as the primary active components contributing to its anti-RA effects. Conclusion: In this study, we utilized AI technology to learn from a large number of compounds and predict the activity of natural products from Xanthocerais lignum on specific targets. By combining AI technology and the LC-MS approach, rapid screening and prediction of the activity of natural products based on specific targets can be achieved, significantly enhancing the efficiency of discovering new bioactive molecules from medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小井盖完成签到 ,获得积分10
1秒前
热情的元芹完成签到,获得积分10
1秒前
2秒前
陶醉的小海豚完成签到,获得积分10
3秒前
陆晓亦完成签到,获得积分10
3秒前
乐观的觅松完成签到,获得积分10
3秒前
2023204306324发布了新的文献求助10
4秒前
5秒前
端己完成签到,获得积分20
5秒前
6秒前
阿湫发布了新的文献求助10
6秒前
7秒前
7秒前
坤坤完成签到,获得积分10
7秒前
8秒前
STUSSY完成签到,获得积分10
8秒前
wuhuofeng发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
coco完成签到,获得积分10
12秒前
lshao完成签到 ,获得积分10
13秒前
13秒前
zhou发布了新的文献求助30
14秒前
跋扈完成签到,获得积分10
16秒前
温柔翰发布了新的文献求助10
16秒前
16秒前
Jj发布了新的文献求助10
17秒前
ficus_min发布了新的文献求助10
17秒前
木子发布了新的文献求助10
18秒前
Galato发布了新的文献求助10
18秒前
寒冷哈密瓜完成签到 ,获得积分0
18秒前
大模型应助shen采纳,获得10
19秒前
123566完成签到,获得积分10
19秒前
hohn完成签到,获得积分10
19秒前
科研通AI2S应助bsn采纳,获得10
21秒前
LL发布了新的文献求助10
21秒前
张西西完成签到 ,获得积分10
22秒前
研友_ZAxj7n完成签到,获得积分20
24秒前
海上钢琴家完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048