Prediction of Anti-rheumatoid Arthritis Natural Products of Xanthocerais Lignum Based on LC-MS and Artificial Intelligence

支持向量机 类风湿性关节炎 随机森林 机器学习 药物发现 深度学习 理论(学习稳定性) 人工智能 计算机科学 医学 化学 内科学 生物化学
作者
Hao Qian,Zhibing Xiao,Lei Su,Yaqiong Yang,XiangYang Tian,Xiaoqin Wang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:27 被引量:1
标识
DOI:10.2174/0113862073282138240116112348
摘要

Aims: Employing the technique of liquid chromatography-mass spectrometry (LCMS) in conjunction with artificial intelligence (AI) technology to predict and screen for antirheumatoid arthritis (RA) active compounds in Xanthocerais lignum. Background: Natural products have become an important source of new drug discovery. RA is a chronic autoimmune disease characterized by joint inflammation and systemic inflammation. Although there are many drugs available for the treatment of RA, they still have many side effects and limitations. Therefore, finding more effective and safer natural products for the treatment of RA has become an important issue. Methods: In this study, a collection of inhibitors targeting RA-related specific targets was gathered. Machine learning models and deep learning models were constructed using these inhibitors. The performance of the models was evaluated using a test set and ten-fold cross-validation, and the most optimal model was selected for integration. A total of five commonly used machine learning algorithms (logistic regression, k-nearest neighbors, support vector machines, random forest, XGBoost) and one deep learning algorithm (GCN) were employed in this research. Subsequently, a Xanthocerais lignum compound library was established through HPLC-Q-Exactive- MS analysis and relevant literature. The integrated model was utilized to predict and screen for anti-RA active compounds in Xanthocerais lignum. Results: The integrated model exhibited an AUC greater than 0.94 for all target datasets, demonstrating improved stability and accuracy compared to individual models. This enhancement enables better activity prediction for unknown compounds. By employing the integrated model, the activity of 69 identified compounds in Xanthocerais lignum was predicted. The results indicated that isorhamnetin-3-O-glucoside, myricetin, rutinum, cinnamtannin B1, and dihydromyricetin exhibited inhibitory effects on multiple targets. Furthermore, myricetin and dihydromyricetin were found to have relatively higher relative abundances in Xanthocerais lignum, suggesting that they may serve as the primary active components contributing to its anti-RA effects. Conclusion: In this study, we utilized AI technology to learn from a large number of compounds and predict the activity of natural products from Xanthocerais lignum on specific targets. By combining AI technology and the LC-MS approach, rapid screening and prediction of the activity of natural products based on specific targets can be achieved, significantly enhancing the efficiency of discovering new bioactive molecules from medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋酒窝发布了新的文献求助10
1秒前
chemier027发布了新的文献求助30
1秒前
哈哈哈哈哈哈哈完成签到 ,获得积分10
2秒前
正己化人应助yongjie采纳,获得10
2秒前
SciGPT应助从容雨筠采纳,获得10
3秒前
orange完成签到 ,获得积分10
3秒前
3秒前
于子杰发布了新的文献求助10
3秒前
维尼完成签到,获得积分10
3秒前
梨有理想完成签到 ,获得积分10
3秒前
leodu完成签到,获得积分10
3秒前
仙依依完成签到 ,获得积分10
3秒前
秃头沙师弟完成签到,获得积分20
4秒前
陈咪咪完成签到,获得积分10
4秒前
jjwen完成签到 ,获得积分10
4秒前
CodeCraft应助单纯的晓曼采纳,获得10
4秒前
吴旭完成签到,获得积分10
4秒前
pipi完成签到,获得积分10
4秒前
weiye1992完成签到,获得积分10
5秒前
5秒前
无辜的蜗牛完成签到 ,获得积分10
6秒前
7秒前
思源应助昏睡的保温杯采纳,获得10
7秒前
goodgay133完成签到,获得积分10
7秒前
02022发布了新的文献求助10
8秒前
LeuinPonsgi完成签到,获得积分10
8秒前
billGeorge完成签到,获得积分10
9秒前
科研通AI2S应助SNE采纳,获得30
9秒前
酷波er应助Inter09采纳,获得10
9秒前
乔垣结衣发布了新的文献求助30
10秒前
10秒前
egoistMM完成签到,获得积分10
11秒前
金鱼的眼泪完成签到,获得积分10
11秒前
wadaxiwa完成签到,获得积分10
11秒前
will发布了新的文献求助200
12秒前
wenyuLuo完成签到,获得积分10
12秒前
科目三应助褚香旋采纳,获得10
12秒前
爰采唐矣完成签到,获得积分10
12秒前
Criminology34应助billGeorge采纳,获得10
12秒前
小曦仔完成签到,获得积分10
13秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388001
求助须知:如何正确求助?哪些是违规求助? 4509881
关于积分的说明 14033262
捐赠科研通 4420771
什么是DOI,文献DOI怎么找? 2428439
邀请新用户注册赠送积分活动 1421106
关于科研通互助平台的介绍 1400293