Prediction of Anti-rheumatoid Arthritis Natural Products of Xanthocerais Lignum Based on LC-MS and Artificial Intelligence

支持向量机 类风湿性关节炎 随机森林 机器学习 药物发现 深度学习 理论(学习稳定性) 人工智能 计算机科学 医学 化学 内科学 生物化学
作者
Hao Qian,Zhibing Xiao,Lei Su,Yaqiong Yang,XiangYang Tian,Xiaoqin Wang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:27 被引量:1
标识
DOI:10.2174/0113862073282138240116112348
摘要

Aims: Employing the technique of liquid chromatography-mass spectrometry (LCMS) in conjunction with artificial intelligence (AI) technology to predict and screen for antirheumatoid arthritis (RA) active compounds in Xanthocerais lignum. Background: Natural products have become an important source of new drug discovery. RA is a chronic autoimmune disease characterized by joint inflammation and systemic inflammation. Although there are many drugs available for the treatment of RA, they still have many side effects and limitations. Therefore, finding more effective and safer natural products for the treatment of RA has become an important issue. Methods: In this study, a collection of inhibitors targeting RA-related specific targets was gathered. Machine learning models and deep learning models were constructed using these inhibitors. The performance of the models was evaluated using a test set and ten-fold cross-validation, and the most optimal model was selected for integration. A total of five commonly used machine learning algorithms (logistic regression, k-nearest neighbors, support vector machines, random forest, XGBoost) and one deep learning algorithm (GCN) were employed in this research. Subsequently, a Xanthocerais lignum compound library was established through HPLC-Q-Exactive- MS analysis and relevant literature. The integrated model was utilized to predict and screen for anti-RA active compounds in Xanthocerais lignum. Results: The integrated model exhibited an AUC greater than 0.94 for all target datasets, demonstrating improved stability and accuracy compared to individual models. This enhancement enables better activity prediction for unknown compounds. By employing the integrated model, the activity of 69 identified compounds in Xanthocerais lignum was predicted. The results indicated that isorhamnetin-3-O-glucoside, myricetin, rutinum, cinnamtannin B1, and dihydromyricetin exhibited inhibitory effects on multiple targets. Furthermore, myricetin and dihydromyricetin were found to have relatively higher relative abundances in Xanthocerais lignum, suggesting that they may serve as the primary active components contributing to its anti-RA effects. Conclusion: In this study, we utilized AI technology to learn from a large number of compounds and predict the activity of natural products from Xanthocerais lignum on specific targets. By combining AI technology and the LC-MS approach, rapid screening and prediction of the activity of natural products based on specific targets can be achieved, significantly enhancing the efficiency of discovering new bioactive molecules from medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助30
2秒前
5秒前
ncuwzq完成签到,获得积分10
7秒前
Cat4pig完成签到 ,获得积分10
11秒前
JodieZhu发布了新的文献求助30
12秒前
12秒前
青云完成签到,获得积分10
15秒前
bclddmy完成签到,获得积分10
18秒前
清风荷影完成签到 ,获得积分10
21秒前
cgs完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
NexusExplorer应助Alien采纳,获得10
26秒前
李健应助JodieZhu采纳,获得30
30秒前
30秒前
31秒前
大轩完成签到 ,获得积分10
32秒前
自信书文完成签到 ,获得积分10
33秒前
33秒前
Lrcx完成签到 ,获得积分10
33秒前
苒苒完成签到,获得积分10
35秒前
36秒前
38秒前
40秒前
量子星尘发布了新的文献求助10
41秒前
学术小白完成签到,获得积分10
43秒前
科目三应助眯眯眼的山柳采纳,获得10
44秒前
45秒前
是真的完成签到 ,获得积分10
46秒前
jzmulyl完成签到,获得积分10
47秒前
深情安青应助饭饭采纳,获得10
47秒前
50秒前
凤迎雪飘完成签到,获得积分10
51秒前
大饼完成签到 ,获得积分10
53秒前
jzmupyj完成签到,获得积分10
55秒前
57秒前
lzx关闭了lzx文献求助
58秒前
愉快的犀牛完成签到 ,获得积分10
58秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733107
求助须知:如何正确求助?哪些是违规求助? 5345829
关于积分的说明 15323061
捐赠科研通 4878300
什么是DOI,文献DOI怎么找? 2621144
邀请新用户注册赠送积分活动 1570261
关于科研通互助平台的介绍 1527144