Prediction of Anti-rheumatoid Arthritis Natural Products of Xanthocerais Lignum Based on LC-MS and Artificial Intelligence

支持向量机 类风湿性关节炎 随机森林 机器学习 药物发现 深度学习 理论(学习稳定性) 人工智能 计算机科学 医学 化学 内科学 生物化学
作者
Hao Qian,Zhibing Xiao,Lei Su,Yaqiong Yang,XiangYang Tian,Xiaoqin Wang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:27
标识
DOI:10.2174/0113862073282138240116112348
摘要

Aims: Employing the technique of liquid chromatography-mass spectrometry (LCMS) in conjunction with artificial intelligence (AI) technology to predict and screen for antirheumatoid arthritis (RA) active compounds in Xanthocerais lignum. Background: Natural products have become an important source of new drug discovery. RA is a chronic autoimmune disease characterized by joint inflammation and systemic inflammation. Although there are many drugs available for the treatment of RA, they still have many side effects and limitations. Therefore, finding more effective and safer natural products for the treatment of RA has become an important issue. Methods: In this study, a collection of inhibitors targeting RA-related specific targets was gathered. Machine learning models and deep learning models were constructed using these inhibitors. The performance of the models was evaluated using a test set and ten-fold cross-validation, and the most optimal model was selected for integration. A total of five commonly used machine learning algorithms (logistic regression, k-nearest neighbors, support vector machines, random forest, XGBoost) and one deep learning algorithm (GCN) were employed in this research. Subsequently, a Xanthocerais lignum compound library was established through HPLC-Q-Exactive- MS analysis and relevant literature. The integrated model was utilized to predict and screen for anti-RA active compounds in Xanthocerais lignum. Results: The integrated model exhibited an AUC greater than 0.94 for all target datasets, demonstrating improved stability and accuracy compared to individual models. This enhancement enables better activity prediction for unknown compounds. By employing the integrated model, the activity of 69 identified compounds in Xanthocerais lignum was predicted. The results indicated that isorhamnetin-3-O-glucoside, myricetin, rutinum, cinnamtannin B1, and dihydromyricetin exhibited inhibitory effects on multiple targets. Furthermore, myricetin and dihydromyricetin were found to have relatively higher relative abundances in Xanthocerais lignum, suggesting that they may serve as the primary active components contributing to its anti-RA effects. Conclusion: In this study, we utilized AI technology to learn from a large number of compounds and predict the activity of natural products from Xanthocerais lignum on specific targets. By combining AI technology and the LC-MS approach, rapid screening and prediction of the activity of natural products based on specific targets can be achieved, significantly enhancing the efficiency of discovering new bioactive molecules from medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甄半雪完成签到 ,获得积分10
1秒前
蚝油盗梨完成签到 ,获得积分10
1秒前
然大宝完成签到,获得积分10
1秒前
2秒前
ChinaYFX发布了新的文献求助30
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
zhouzehua1003发布了新的文献求助10
4秒前
神羊完成签到,获得积分10
4秒前
你好可爱发布了新的文献求助10
5秒前
研友_QLXYgn发布了新的文献求助10
7秒前
Shawn完成签到,获得积分10
8秒前
8秒前
9秒前
NJSGSKL发布了新的文献求助10
9秒前
爆米花应助忐忑的阑香采纳,获得10
11秒前
保安队长林江仙完成签到,获得积分10
11秒前
summer 3575发布了新的文献求助10
12秒前
12秒前
光亮语梦完成签到 ,获得积分10
13秒前
小宋发布了新的文献求助10
13秒前
CodeCraft应助zhouzehua1003采纳,获得10
13秒前
DODO完成签到,获得积分10
15秒前
15秒前
16秒前
南冥完成签到 ,获得积分10
17秒前
王12完成签到,获得积分10
18秒前
baibai发布了新的文献求助10
18秒前
眠茶醒药发布了新的文献求助10
18秒前
20秒前
20秒前
华仔应助Ultraman45采纳,获得10
21秒前
21秒前
21秒前
kuokyt发布了新的文献求助10
25秒前
25秒前
26秒前
彭于晏应助Mason采纳,获得10
26秒前
跳跃太清完成签到 ,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976253
求助须知:如何正确求助?哪些是违规求助? 3520405
关于积分的说明 11203301
捐赠科研通 3257028
什么是DOI,文献DOI怎么找? 1798589
邀请新用户注册赠送积分活动 877755
科研通“疑难数据库(出版商)”最低求助积分说明 806521