Parallel power load abnormalities detection using fast density peak clustering with a hybrid canopy-K-means algorithm

聚类分析 天蓬 计算机科学 功率(物理) 算法 环境科学 物理 人工智能 生物 生态学 量子力学
作者
Ahmed Hadi Ali AL-Jumaili,Ravie Chandren Muniyandi,Mohammad Kamrul Hasan,Mandeep Jit Singh,Johnny Koh Siaw Paw,Abdulmajeed Al-Jumaily
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-26
标识
DOI:10.3233/ida-230573
摘要

Parallel power loads anomalies are processed by a fast-density peak clustering technique that capitalizes on the hybrid strengths of Canopy and K-means algorithms all within Apache Mahout’s distributed machine-learning environment. The study taps into Apache Hadoop’s robust tools for data storage and processing, including HDFS and MapReduce, to effectively manage and analyze big data challenges. The preprocessing phase utilizes Canopy clustering to expedite the initial partitioning of data points, which are subsequently refined by K-means to enhance clustering performance. Experimental results confirm that incorporating the Canopy as an initial step markedly reduces the computational effort to process the vast quantity of parallel power load abnormalities. The Canopy clustering approach, enabled by distributed machine learning through Apache Mahout, is utilized as a preprocessing step within the K-means clustering technique. The hybrid algorithm was implemented to minimise the length of time needed to address the massive scale of the detected parallel power load abnormalities. Data vectors are generated based on the time needed, sequential and parallel candidate feature data are obtained, and the data rate is combined. After classifying the time set using the canopy with the K-means algorithm and the vector representation weighted by factors, the clustering impact is assessed using purity, precision, recall, and F value. The results showed that using canopy as a preprocessing step cut the time it proceeds to deal with the significant number of power load abnormalities found in parallel using a fast density peak dataset and the time it proceeds for the k-means algorithm to run. Additionally, tests demonstrate that combining canopy and the K-means algorithm to analyze data performs consistently and dependably on the Hadoop platform and has a clustering result that offers a scalable and effective solution for power system monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
逗小妹发布了新的文献求助10
8秒前
可爱的函函应助瘦瘦采纳,获得10
8秒前
深情安青应助fantexi113采纳,获得10
9秒前
梦_筱彩完成签到 ,获得积分10
11秒前
开拖拉机的医学僧完成签到 ,获得积分10
13秒前
swordshine完成签到,获得积分10
14秒前
怕孤独的访云完成签到 ,获得积分10
15秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
fantexi113发布了新的文献求助10
22秒前
ng完成签到 ,获得积分10
25秒前
26秒前
诗意Sy完成签到 ,获得积分10
37秒前
38秒前
Jeffery426完成签到,获得积分10
39秒前
41秒前
zhuosht完成签到 ,获得积分10
43秒前
银海里的玫瑰_完成签到 ,获得积分10
44秒前
46秒前
tmobiusx完成签到,获得积分10
46秒前
范佳宁完成签到 ,获得积分10
51秒前
52秒前
keyaner完成签到,获得积分10
52秒前
彗星入梦完成签到 ,获得积分10
55秒前
Rondab应助邱屁屁采纳,获得10
55秒前
fzh发布了新的文献求助20
57秒前
hh完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
无花果应助fantexi113采纳,获得10
1分钟前
英俊的铭应助斯文的傲珊采纳,获得10
1分钟前
和平完成签到 ,获得积分10
1分钟前
1分钟前
fzh完成签到,获得积分10
1分钟前
fantexi113发布了新的文献求助10
1分钟前
墨墨完成签到 ,获得积分10
1分钟前
Bin_Liu发布了新的文献求助10
1分钟前
点点完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503148
关于积分的说明 11111393
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870776
科研通“疑难数据库(出版商)”最低求助积分说明 802292