Parallel power load abnormalities detection using fast density peak clustering with a hybrid canopy-K-means algorithm

聚类分析 天蓬 计算机科学 功率(物理) 算法 环境科学 物理 人工智能 生物 生态学 量子力学
作者
Ahmed Hadi Ali AL-Jumaili,Ravie Chandren Muniyandi,Mohammad Kamrul Hasan,Mandeep Jit Singh,Johnny Koh Siaw Paw,Abdulmajeed Al-Jumaily
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-26
标识
DOI:10.3233/ida-230573
摘要

Parallel power loads anomalies are processed by a fast-density peak clustering technique that capitalizes on the hybrid strengths of Canopy and K-means algorithms all within Apache Mahout’s distributed machine-learning environment. The study taps into Apache Hadoop’s robust tools for data storage and processing, including HDFS and MapReduce, to effectively manage and analyze big data challenges. The preprocessing phase utilizes Canopy clustering to expedite the initial partitioning of data points, which are subsequently refined by K-means to enhance clustering performance. Experimental results confirm that incorporating the Canopy as an initial step markedly reduces the computational effort to process the vast quantity of parallel power load abnormalities. The Canopy clustering approach, enabled by distributed machine learning through Apache Mahout, is utilized as a preprocessing step within the K-means clustering technique. The hybrid algorithm was implemented to minimise the length of time needed to address the massive scale of the detected parallel power load abnormalities. Data vectors are generated based on the time needed, sequential and parallel candidate feature data are obtained, and the data rate is combined. After classifying the time set using the canopy with the K-means algorithm and the vector representation weighted by factors, the clustering impact is assessed using purity, precision, recall, and F value. The results showed that using canopy as a preprocessing step cut the time it proceeds to deal with the significant number of power load abnormalities found in parallel using a fast density peak dataset and the time it proceeds for the k-means algorithm to run. Additionally, tests demonstrate that combining canopy and the K-means algorithm to analyze data performs consistently and dependably on the Hadoop platform and has a clustering result that offers a scalable and effective solution for power system monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xl完成签到 ,获得积分10
刚刚
求知的周发布了新的文献求助30
1秒前
meibeiwu关注了科研通微信公众号
1秒前
HZH发布了新的文献求助10
2秒前
小蘑菇完成签到 ,获得积分10
2秒前
nb小子发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
David发布了新的文献求助10
4秒前
团团完成签到,获得积分10
4秒前
zwx发布了新的文献求助10
5秒前
怡然的寻桃关注了科研通微信公众号
6秒前
今天炒鱿鱼完成签到,获得积分20
6秒前
电池小能手完成签到,获得积分10
7秒前
Bubble_bei完成签到 ,获得积分10
8秒前
董恋风完成签到,获得积分10
9秒前
大模型应助一一采纳,获得10
10秒前
10秒前
11秒前
海鑫王完成签到,获得积分10
12秒前
mao关注了科研通微信公众号
12秒前
Attendre完成签到 ,获得积分10
12秒前
爆米花应助Faith采纳,获得10
13秒前
傲娇的月亮完成签到,获得积分10
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
田様应助慢慢采纳,获得10
14秒前
14秒前
劼大大完成签到,获得积分10
14秒前
执着的草丛完成签到,获得积分10
14秒前
14秒前
wanci应助zwx采纳,获得10
15秒前
zwx发布了新的文献求助20
15秒前
16秒前
Owen应助风趣的天奇采纳,获得10
17秒前
clear发布了新的文献求助10
18秒前
Tting发布了新的文献求助10
18秒前
wsd发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049