亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Parallel power load abnormalities detection using fast density peak clustering with a hybrid canopy-K-means algorithm

聚类分析 天蓬 计算机科学 功率(物理) 算法 环境科学 物理 人工智能 生物 生态学 量子力学
作者
Ahmed Hadi Ali AL-Jumaili,Ravie Chandren Muniyandi,Mohammad Kamrul Hasan,Mandeep Jit Singh,Johnny Koh Siaw Paw,Abdulmajeed Al-Jumaily
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-26
标识
DOI:10.3233/ida-230573
摘要

Parallel power loads anomalies are processed by a fast-density peak clustering technique that capitalizes on the hybrid strengths of Canopy and K-means algorithms all within Apache Mahout’s distributed machine-learning environment. The study taps into Apache Hadoop’s robust tools for data storage and processing, including HDFS and MapReduce, to effectively manage and analyze big data challenges. The preprocessing phase utilizes Canopy clustering to expedite the initial partitioning of data points, which are subsequently refined by K-means to enhance clustering performance. Experimental results confirm that incorporating the Canopy as an initial step markedly reduces the computational effort to process the vast quantity of parallel power load abnormalities. The Canopy clustering approach, enabled by distributed machine learning through Apache Mahout, is utilized as a preprocessing step within the K-means clustering technique. The hybrid algorithm was implemented to minimise the length of time needed to address the massive scale of the detected parallel power load abnormalities. Data vectors are generated based on the time needed, sequential and parallel candidate feature data are obtained, and the data rate is combined. After classifying the time set using the canopy with the K-means algorithm and the vector representation weighted by factors, the clustering impact is assessed using purity, precision, recall, and F value. The results showed that using canopy as a preprocessing step cut the time it proceeds to deal with the significant number of power load abnormalities found in parallel using a fast density peak dataset and the time it proceeds for the k-means algorithm to run. Additionally, tests demonstrate that combining canopy and the K-means algorithm to analyze data performs consistently and dependably on the Hadoop platform and has a clustering result that offers a scalable and effective solution for power system monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jimforu完成签到 ,获得积分10
4秒前
10秒前
ocseek完成签到 ,获得积分10
24秒前
32秒前
37秒前
墨痕发布了新的文献求助10
38秒前
41秒前
鳗鱼柚子完成签到 ,获得积分10
46秒前
NEKO完成签到,获得积分10
50秒前
坚守完成签到 ,获得积分10
52秒前
Atticus完成签到,获得积分10
53秒前
lezbj99完成签到,获得积分10
58秒前
赤恩应助tuanheqi采纳,获得20
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
TXZ06完成签到,获得积分10
1分钟前
SciGPT应助wy采纳,获得10
1分钟前
Loney完成签到 ,获得积分10
1分钟前
1分钟前
威武灵阳完成签到,获得积分10
1分钟前
wy发布了新的文献求助10
1分钟前
小白加油完成签到 ,获得积分10
1分钟前
咎不可完成签到,获得积分10
2分钟前
NexusExplorer应助斯可采纳,获得10
2分钟前
jjx1005完成签到 ,获得积分10
2分钟前
知弈否发布了新的文献求助10
2分钟前
脱锦涛完成签到 ,获得积分10
2分钟前
flyinthesky完成签到,获得积分10
2分钟前
斯文的访烟完成签到,获得积分10
2分钟前
lige完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Orange应助科研通管家采纳,获得10
3分钟前
斯可完成签到,获得积分10
3分钟前
3分钟前
Hello应助迷你的醉薇采纳,获得10
3分钟前
斯可发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568162
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701881
捐赠科研通 4594488
什么是DOI,文献DOI怎么找? 2521010
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696