清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Parallel power load abnormalities detection using fast density peak clustering with a hybrid canopy-K-means algorithm

聚类分析 天蓬 计算机科学 功率(物理) 算法 环境科学 物理 人工智能 生物 生态学 量子力学
作者
Ahmed Hadi Ali AL-Jumaili,Ravie Chandren Muniyandi,Mohammad Kamrul Hasan,Mandeep Jit Singh,Johnny Koh Siaw Paw,Abdulmajeed Al-Jumaily
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-26
标识
DOI:10.3233/ida-230573
摘要

Parallel power loads anomalies are processed by a fast-density peak clustering technique that capitalizes on the hybrid strengths of Canopy and K-means algorithms all within Apache Mahout’s distributed machine-learning environment. The study taps into Apache Hadoop’s robust tools for data storage and processing, including HDFS and MapReduce, to effectively manage and analyze big data challenges. The preprocessing phase utilizes Canopy clustering to expedite the initial partitioning of data points, which are subsequently refined by K-means to enhance clustering performance. Experimental results confirm that incorporating the Canopy as an initial step markedly reduces the computational effort to process the vast quantity of parallel power load abnormalities. The Canopy clustering approach, enabled by distributed machine learning through Apache Mahout, is utilized as a preprocessing step within the K-means clustering technique. The hybrid algorithm was implemented to minimise the length of time needed to address the massive scale of the detected parallel power load abnormalities. Data vectors are generated based on the time needed, sequential and parallel candidate feature data are obtained, and the data rate is combined. After classifying the time set using the canopy with the K-means algorithm and the vector representation weighted by factors, the clustering impact is assessed using purity, precision, recall, and F value. The results showed that using canopy as a preprocessing step cut the time it proceeds to deal with the significant number of power load abnormalities found in parallel using a fast density peak dataset and the time it proceeds for the k-means algorithm to run. Additionally, tests demonstrate that combining canopy and the K-means algorithm to analyze data performs consistently and dependably on the Hadoop platform and has a clustering result that offers a scalable and effective solution for power system monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伏城完成签到 ,获得积分10
12秒前
lily完成签到 ,获得积分10
13秒前
zzgpku完成签到,获得积分0
27秒前
Airhug完成签到 ,获得积分10
48秒前
Dylan完成签到 ,获得积分10
59秒前
雷九万班完成签到 ,获得积分10
1分钟前
zhongu应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
zxcvb666发布了新的文献求助10
2分钟前
月儿完成签到 ,获得积分10
2分钟前
2分钟前
hugeyoung完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Arvin发布了新的文献求助10
3分钟前
Arvin完成签到,获得积分10
3分钟前
zhongu应助科研通管家采纳,获得10
3分钟前
jlwang完成签到,获得积分10
3分钟前
袁雪蓓完成签到 ,获得积分10
3分钟前
xxf1002完成签到 ,获得积分10
3分钟前
kbcbwb2002完成签到,获得积分10
4分钟前
gobi完成签到 ,获得积分10
4分钟前
赵先生发布了新的文献求助10
4分钟前
4分钟前
zhdjj完成签到 ,获得积分10
4分钟前
浚稚完成签到 ,获得积分10
4分钟前
贪玩的访风完成签到 ,获得积分10
5分钟前
DJ_Tokyo完成签到,获得积分10
5分钟前
汉堡包应助Cistone采纳,获得10
5分钟前
CJ发布了新的文献求助20
5分钟前
5分钟前
bo完成签到 ,获得积分10
6分钟前
Perry完成签到,获得积分10
6分钟前
cyskdsn完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460136
求助须知:如何正确求助?哪些是违规求助? 3054407
关于积分的说明 9042009
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505283
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887