亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model

脑-机接口 计算机科学 判别式 卷积神经网络 运动表象 人工智能 脑电图 模式识别(心理学) 深度学习 机器学习 语音识别 神经科学 生物
作者
Shiqi Yu,Zedong Wang,Fei Wang,Kai Chen,Dezhong Yao,Peng Xu,Yong Zhang,Hesong Wang,Tao Zhang
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (2) 被引量:3
标识
DOI:10.1093/cercor/bhad511
摘要

Motor imagery (MI) is a cognitive process wherein an individual mentally rehearses a specific movement without physically executing it. Recently, MI-based brain-computer interface (BCI) has attracted widespread attention. However, accurate decoding of MI and understanding of neural mechanisms still face huge challenges. These seriously hinder the clinical application and development of BCI systems based on MI. Thus, it is very necessary to develop new methods to decode MI tasks. In this work, we propose a multi-branch convolutional neural network (MBCNN) with a temporal convolutional network (TCN), an end-to-end deep learning framework to decode multi-class MI tasks. We first used MBCNN to capture the MI electroencephalography signals information on temporal and spectral domains through different convolutional kernels. Then, we introduce TCN to extract more discriminative features. The within-subject cross-session strategy is used to validate the classification performance on the dataset of BCI Competition IV-2a. The results showed that we achieved 75.08% average accuracy for 4-class MI task classification, outperforming several state-of-the-art approaches. The proposed MBCNN-TCN-Net framework successfully captures discriminative features and decodes MI tasks effectively, improving the performance of MI-BCIs. Our findings could provide significant potential for improving the clinical application and development of MI-based BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
落落完成签到 ,获得积分0
17秒前
31秒前
xiaozou55完成签到 ,获得积分10
33秒前
跳跃毒娘发布了新的文献求助10
34秒前
1分钟前
不安的晓灵完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
红色石头发布了新的文献求助10
2分钟前
红色石头完成签到,获得积分20
2分钟前
比比谁的速度快应助张张采纳,获得10
2分钟前
3分钟前
跳跃毒娘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
LeoSam完成签到,获得积分10
4分钟前
4分钟前
Zephyr发布了新的文献求助30
4分钟前
满意的伊发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
小飞猪发布了新的文献求助10
6分钟前
打打应助小飞猪采纳,获得10
6分钟前
伏城完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
Hello应助鬼见愁采纳,获得10
6分钟前
7分钟前
资白玉完成签到 ,获得积分0
7分钟前
7分钟前
yx_cheng应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008330
求助须知:如何正确求助?哪些是违规求助? 3548050
关于积分的说明 11298670
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188