Smoke Recognition in Satellite Imagery via an Attention Pyramid Network With Bidirectional Multilevel Multigranularity Feature Aggregation and Gated Fusion

计算机科学 粒度 特征(语言学) 棱锥(几何) 人工智能 数据挖掘 模式识别(心理学) 哲学 语言学 物理 光学 操作系统
作者
Huanjie Tao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 14047-14057 被引量:6
标识
DOI:10.1109/jiot.2023.3339476
摘要

Mingyuan Ren, Xiuwen Fu, Pasquale Pace, Gianluca Aloi, and Giancarlo FortinoRecognizing smoke in satellite imagery is a critical approach in an Internet of Things (IoT) system for monitoring forest fires. However, the task remains challenging due to false alarms of smoke-like occurrences caused by complex land cover types, and missing detections caused by the diversity of fire smoke. Some reasons are that existing methods overlook attention granularity, neglect all-layer-based fusion of low-level features with high-level semantic information, and fail to address interferences arising from fusing different kinds of features. To solve these issues, this paper presents an attention pyramid network with bidirectional multi-level multi-granularity feature aggregation and gated fusion for smoke recognition. First, to guide the model sequentially extract multi-granularity smoke attention clues for complementary smoke perception, we design an attention-guided feature pyramid module by concatenating residual blocks and attention pyramid blocks. Second, to leverage both low-level fine-grained and high-level semantic features in all network layers, we design a bidirectional feature aggregation module using multi-level multi-granularity feature blocks. Finally, to selectively integrate the features with different resolutions and semantic levels to effectively achieve feature complementarity and avoid feature mutual interference, we design a gated feature fusion module using gated feature fusion blocks. The experimental results demonstrate that our model achieves an accuracy of 98.33% on the USTC-SmokeRS dataset. Additionally, on the E-USTC-SmokeRS dataset, our model achieves a detection rate of 94.92%, a false alarm rate of 3.00%, and an F1-score of 0.9553. These results surpass the performance of existing satellite-imagery-based smoke recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃花蝴蝶吗完成签到,获得积分10
1秒前
小文殊完成签到 ,获得积分10
1秒前
归零者发布了新的文献求助10
2秒前
Hh完成签到,获得积分10
3秒前
4秒前
旺旺萃冰冰完成签到 ,获得积分10
5秒前
无心的星月完成签到 ,获得积分10
7秒前
善学以致用应助uil采纳,获得10
8秒前
liu发布了新的文献求助10
8秒前
水本无忧87完成签到,获得积分10
8秒前
鑫鑫完成签到,获得积分10
8秒前
爱在深秋完成签到,获得积分10
9秒前
10秒前
2275523154完成签到,获得积分10
12秒前
天天快乐应助归零者采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
huodian4发布了新的文献求助10
14秒前
kk完成签到,获得积分10
16秒前
赫连烙完成签到,获得积分10
18秒前
18秒前
19秒前
huodian4完成签到,获得积分10
19秒前
核桃nut完成签到,获得积分10
19秒前
犹豫的若男完成签到,获得积分10
20秒前
陶醉的又夏完成签到 ,获得积分10
21秒前
鹏飞九霄完成签到,获得积分10
22秒前
HH完成签到,获得积分10
22秒前
Snow完成签到 ,获得积分10
22秒前
777完成签到,获得积分10
23秒前
,。应助崔鑫采纳,获得20
23秒前
uil发布了新的文献求助10
23秒前
小二郎应助cc采纳,获得10
24秒前
量子星尘发布了新的文献求助10
26秒前
沙糖桔完成签到,获得积分10
31秒前
Dante完成签到,获得积分10
31秒前
无尘完成签到 ,获得积分10
31秒前
绝活中投完成签到 ,获得积分10
33秒前
36秒前
36秒前
虚幻的涵柏完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044838
求助须知:如何正确求助?哪些是违规求助? 4274315
关于积分的说明 13323674
捐赠科研通 4088088
什么是DOI,文献DOI怎么找? 2236731
邀请新用户注册赠送积分活动 1244114
关于科研通互助平台的介绍 1172128