已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Smoke Recognition in Satellite Imagery via an Attention Pyramid Network With Bidirectional Multilevel Multigranularity Feature Aggregation and Gated Fusion

计算机科学 粒度 特征(语言学) 棱锥(几何) 人工智能 数据挖掘 模式识别(心理学) 语言学 操作系统 光学 物理 哲学
作者
Huanjie Tao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 14047-14057 被引量:6
标识
DOI:10.1109/jiot.2023.3339476
摘要

Mingyuan Ren, Xiuwen Fu, Pasquale Pace, Gianluca Aloi, and Giancarlo FortinoRecognizing smoke in satellite imagery is a critical approach in an Internet of Things (IoT) system for monitoring forest fires. However, the task remains challenging due to false alarms of smoke-like occurrences caused by complex land cover types, and missing detections caused by the diversity of fire smoke. Some reasons are that existing methods overlook attention granularity, neglect all-layer-based fusion of low-level features with high-level semantic information, and fail to address interferences arising from fusing different kinds of features. To solve these issues, this paper presents an attention pyramid network with bidirectional multi-level multi-granularity feature aggregation and gated fusion for smoke recognition. First, to guide the model sequentially extract multi-granularity smoke attention clues for complementary smoke perception, we design an attention-guided feature pyramid module by concatenating residual blocks and attention pyramid blocks. Second, to leverage both low-level fine-grained and high-level semantic features in all network layers, we design a bidirectional feature aggregation module using multi-level multi-granularity feature blocks. Finally, to selectively integrate the features with different resolutions and semantic levels to effectively achieve feature complementarity and avoid feature mutual interference, we design a gated feature fusion module using gated feature fusion blocks. The experimental results demonstrate that our model achieves an accuracy of 98.33% on the USTC-SmokeRS dataset. Additionally, on the E-USTC-SmokeRS dataset, our model achieves a detection rate of 94.92%, a false alarm rate of 3.00%, and an F1-score of 0.9553. These results surpass the performance of existing satellite-imagery-based smoke recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyp86完成签到,获得积分10
1秒前
旋光异构关注了科研通微信公众号
5秒前
万能图书馆应助123采纳,获得10
5秒前
7秒前
caroline发布了新的文献求助10
8秒前
十七完成签到 ,获得积分10
10秒前
科研通AI2S应助松间蓝雾采纳,获得10
18秒前
教生物的杨教授完成签到,获得积分10
19秒前
22秒前
寡妇哥完成签到 ,获得积分10
22秒前
cen发布了新的文献求助10
25秒前
Vicktor2021发布了新的文献求助10
27秒前
何遇完成签到,获得积分10
28秒前
无花果应助韩凡采纳,获得10
33秒前
33秒前
甜甜甜完成签到 ,获得积分10
33秒前
荔枝罐头完成签到,获得积分10
36秒前
卡尔拉完成签到,获得积分10
38秒前
Qiuyajing完成签到,获得积分10
38秒前
英勇兔子完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
40秒前
41秒前
科研通AI2S应助cen采纳,获得10
43秒前
wanci应助coke采纳,获得20
44秒前
朱虹完成签到,获得积分10
45秒前
务实颜完成签到 ,获得积分10
47秒前
SciGPT应助科研通管家采纳,获得10
48秒前
试尝胆大应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
ding应助科研通管家采纳,获得10
48秒前
48秒前
48秒前
orixero应助科研通管家采纳,获得10
48秒前
48秒前
49秒前
Bacon完成签到,获得积分10
49秒前
林先生给林先生的求助进行了留言
50秒前
50秒前
初雪完成签到,获得积分10
53秒前
Shawnchan发布了新的文献求助10
54秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021