Smoke Recognition in Satellite Imagery via an Attention Pyramid Network With Bidirectional Multilevel Multigranularity Feature Aggregation and Gated Fusion

计算机科学 粒度 特征(语言学) 棱锥(几何) 人工智能 数据挖掘 模式识别(心理学) 哲学 语言学 物理 光学 操作系统
作者
Huanjie Tao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 14047-14057 被引量:6
标识
DOI:10.1109/jiot.2023.3339476
摘要

Mingyuan Ren, Xiuwen Fu, Pasquale Pace, Gianluca Aloi, and Giancarlo FortinoRecognizing smoke in satellite imagery is a critical approach in an Internet of Things (IoT) system for monitoring forest fires. However, the task remains challenging due to false alarms of smoke-like occurrences caused by complex land cover types, and missing detections caused by the diversity of fire smoke. Some reasons are that existing methods overlook attention granularity, neglect all-layer-based fusion of low-level features with high-level semantic information, and fail to address interferences arising from fusing different kinds of features. To solve these issues, this paper presents an attention pyramid network with bidirectional multi-level multi-granularity feature aggregation and gated fusion for smoke recognition. First, to guide the model sequentially extract multi-granularity smoke attention clues for complementary smoke perception, we design an attention-guided feature pyramid module by concatenating residual blocks and attention pyramid blocks. Second, to leverage both low-level fine-grained and high-level semantic features in all network layers, we design a bidirectional feature aggregation module using multi-level multi-granularity feature blocks. Finally, to selectively integrate the features with different resolutions and semantic levels to effectively achieve feature complementarity and avoid feature mutual interference, we design a gated feature fusion module using gated feature fusion blocks. The experimental results demonstrate that our model achieves an accuracy of 98.33% on the USTC-SmokeRS dataset. Additionally, on the E-USTC-SmokeRS dataset, our model achieves a detection rate of 94.92%, a false alarm rate of 3.00%, and an F1-score of 0.9553. These results surpass the performance of existing satellite-imagery-based smoke recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实天空应助dm采纳,获得10
刚刚
刚刚
4秒前
5秒前
加油发布了新的文献求助10
5秒前
科研通AI2S应助SwapExisting采纳,获得10
5秒前
6秒前
6秒前
刻苦的元菱完成签到,获得积分10
8秒前
默默纲发布了新的文献求助30
10秒前
维拉帕米发布了新的文献求助10
10秒前
整齐凌萱发布了新的文献求助10
10秒前
白白完成签到,获得积分10
11秒前
笨笨西牛完成签到 ,获得积分10
11秒前
帅哥吴克完成签到,获得积分10
13秒前
13秒前
脑洞疼应助芋圆波波采纳,获得10
14秒前
15秒前
思源应助Sygganggang采纳,获得10
17秒前
123发布了新的文献求助10
17秒前
17秒前
KoitoYuu完成签到,获得积分10
20秒前
21秒前
hdh发布了新的文献求助20
21秒前
v111完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
24秒前
科研通AI2S应助shawn采纳,获得10
24秒前
Lucas应助葭月十七采纳,获得10
24秒前
25秒前
yy发布了新的文献求助10
25秒前
Sygganggang发布了新的文献求助10
28秒前
踏实天空应助1234567xjy采纳,获得10
29秒前
大只鱼发布了新的文献求助10
29秒前
大壮应助加油采纳,获得10
29秒前
30秒前
科研通AI2S应助鹅鹅采纳,获得10
30秒前
中西西完成签到 ,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138914
求助须知:如何正确求助?哪些是违规求助? 2789858
关于积分的说明 7792896
捐赠科研通 2446244
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079