重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Smoke Recognition in Satellite Imagery via an Attention Pyramid Network With Bidirectional Multilevel Multigranularity Feature Aggregation and Gated Fusion

计算机科学 粒度 特征(语言学) 棱锥(几何) 人工智能 数据挖掘 模式识别(心理学) 语言学 操作系统 光学 物理 哲学
作者
Huanjie Tao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 14047-14057 被引量:6
标识
DOI:10.1109/jiot.2023.3339476
摘要

Mingyuan Ren, Xiuwen Fu, Pasquale Pace, Gianluca Aloi, and Giancarlo FortinoRecognizing smoke in satellite imagery is a critical approach in an Internet of Things (IoT) system for monitoring forest fires. However, the task remains challenging due to false alarms of smoke-like occurrences caused by complex land cover types, and missing detections caused by the diversity of fire smoke. Some reasons are that existing methods overlook attention granularity, neglect all-layer-based fusion of low-level features with high-level semantic information, and fail to address interferences arising from fusing different kinds of features. To solve these issues, this paper presents an attention pyramid network with bidirectional multi-level multi-granularity feature aggregation and gated fusion for smoke recognition. First, to guide the model sequentially extract multi-granularity smoke attention clues for complementary smoke perception, we design an attention-guided feature pyramid module by concatenating residual blocks and attention pyramid blocks. Second, to leverage both low-level fine-grained and high-level semantic features in all network layers, we design a bidirectional feature aggregation module using multi-level multi-granularity feature blocks. Finally, to selectively integrate the features with different resolutions and semantic levels to effectively achieve feature complementarity and avoid feature mutual interference, we design a gated feature fusion module using gated feature fusion blocks. The experimental results demonstrate that our model achieves an accuracy of 98.33% on the USTC-SmokeRS dataset. Additionally, on the E-USTC-SmokeRS dataset, our model achieves a detection rate of 94.92%, a false alarm rate of 3.00%, and an F1-score of 0.9553. These results surpass the performance of existing satellite-imagery-based smoke recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
66发布了新的文献求助10
1秒前
1秒前
努力搬砖的小胡完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
laplacelu发布了新的文献求助20
3秒前
ohh完成签到,获得积分10
3秒前
天天快乐应助刘亦菲采纳,获得10
3秒前
3秒前
让我康康发布了新的文献求助10
3秒前
彭于晏应助韭菜采纳,获得10
3秒前
烟花应助后来采纳,获得10
4秒前
xiuuu发布了新的文献求助30
4秒前
4秒前
Zlamb发布了新的文献求助10
4秒前
科研通AI6应助超帅鸭子采纳,获得10
4秒前
monned发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
冰柠檬完成签到,获得积分10
5秒前
吕曼完成签到,获得积分10
5秒前
KongHN发布了新的文献求助10
5秒前
5秒前
Zhijiuz完成签到,获得积分10
5秒前
5秒前
cjh发布了新的文献求助10
5秒前
6秒前
天天快乐应助不枯萎的花采纳,获得10
6秒前
6秒前
深情安青应助舒服的青寒采纳,获得10
6秒前
福福发布了新的文献求助10
6秒前
颜笙完成签到,获得积分10
6秒前
小xun完成签到,获得积分10
6秒前
7秒前
大个应助小鸭超人采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612