Advanced robust control design and experimental verification for trajectory tracking of model-based uncertain collaborative robots

控制理论(社会学) 稳健性(进化) 弹道 计算机科学 水准点(测量) 机器人 控制器(灌溉) 鲁棒控制 跟踪误差 控制工程 李雅普诺夫函数 控制系统 人工智能 控制(管理) 工程类 非线性系统 生物化学 化学 物理 电气工程 大地测量学 天文 量子力学 生物 农学 基因 地理
作者
Shengchao Zhen,Runtong Li,Xiaoli Liu,Ye‐Hwa Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 036203-036203 被引量:2
标识
DOI:10.1088/1361-6501/ad179d
摘要

Abstract At the core of this research is the pursuit of enhancing the trajectory tracking performance of six-degree-of-freedom collaborative robots, with a particular focus on addressing the challenges posed by uncertainties in real-world applications. One of the primary issues encountered with existing methods is the susceptibility of trajectory tracking to uncertainties, which can significantly hinder the performance of robotic systems. To address these challenges, we propose an advanced control method, known as the model-based proportional-derivative controller, or MPDP controller for short, which represents an innovative fusion of model-based PD control principles with a robust control algorithm. This amalgamation is driven by the need to mitigate the impact of uncertainties and external disturbances on trajectory tracking. A comprehensive assessment grounded in Lyapunov theory has been undertaken to validate the effectiveness of our approach. The analysis has firmly established that our method ensures not only the ultimate boundedness but also the uniform boundedness of the robotic system, which is critical for its operational stability. Both experimental and simulation studies have been meticulously conducted to benchmark the performance of the MPDP controller against the conventional proportional-integral-derivative controller, which serves as a widely adopted baseline in the field. The results unequivocally demonstrate the superiority of the MPDP controller across multiple dimensions. It exhibits exceptional robustness, resulting in a smaller steady-state tracking error, a critical advantage when addressing inherent uncertainties and external disturbances that can perturb the robot system. This translates to a more stable trajectory tracking performance. Furthermore, the MPDP controller empowers the robot with the capability to precisely follow predefined trajectories, thus ensuring high-precision and reliable execution of tasks. This feature significantly contributes to an overall enhancement of system performance and productivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐若楠完成签到,获得积分10
1秒前
彭于晏应助Keira_Chang采纳,获得10
1秒前
kellogg关注了科研通微信公众号
2秒前
CBY完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI2S应助青筠采纳,获得10
5秒前
5秒前
顾矜应助天天采纳,获得10
6秒前
爆米花应助天天采纳,获得10
6秒前
疯狂的白昼完成签到 ,获得积分10
7秒前
8秒前
隐形曼青应助迷路又夏采纳,获得10
9秒前
爱搞科研的小冯完成签到,获得积分20
11秒前
qiang完成签到,获得积分20
11秒前
Karna完成签到,获得积分10
11秒前
13秒前
Jasper应助qianqina采纳,获得10
13秒前
执着的宝发布了新的文献求助10
13秒前
搜集达人应助墨斗在拼搏采纳,获得10
15秒前
小白菜完成签到,获得积分20
15秒前
CodeCraft应助迷路的初柔采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
tansl1989发布了新的文献求助10
16秒前
夜月发布了新的文献求助10
16秒前
李健的小迷弟应助赫连烙采纳,获得10
17秒前
甜甜秋荷完成签到,获得积分10
17秒前
达不溜qp发布了新的文献求助10
18秒前
18秒前
进击的然完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
思源应助科研通管家采纳,获得30
19秒前
NiL应助科研通管家采纳,获得20
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425164
求助须知:如何正确求助?哪些是违规求助? 4539269
关于积分的说明 14166518
捐赠科研通 4456411
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435224
关于科研通互助平台的介绍 1412564