Advanced robust control design and experimental verification for trajectory tracking of model-based uncertain collaborative robots

控制理论(社会学) 稳健性(进化) 弹道 计算机科学 水准点(测量) 机器人 控制器(灌溉) 鲁棒控制 跟踪误差 控制工程 李雅普诺夫函数 控制系统 人工智能 控制(管理) 工程类 非线性系统 基因 电气工程 物理 生物 量子力学 生物化学 化学 大地测量学 农学 地理 天文
作者
Shengchao Zhen,Runtong Li,Xiaoli Liu,Ye‐Hwa Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 036203-036203 被引量:2
标识
DOI:10.1088/1361-6501/ad179d
摘要

Abstract At the core of this research is the pursuit of enhancing the trajectory tracking performance of six-degree-of-freedom collaborative robots, with a particular focus on addressing the challenges posed by uncertainties in real-world applications. One of the primary issues encountered with existing methods is the susceptibility of trajectory tracking to uncertainties, which can significantly hinder the performance of robotic systems. To address these challenges, we propose an advanced control method, known as the model-based proportional-derivative controller, or MPDP controller for short, which represents an innovative fusion of model-based PD control principles with a robust control algorithm. This amalgamation is driven by the need to mitigate the impact of uncertainties and external disturbances on trajectory tracking. A comprehensive assessment grounded in Lyapunov theory has been undertaken to validate the effectiveness of our approach. The analysis has firmly established that our method ensures not only the ultimate boundedness but also the uniform boundedness of the robotic system, which is critical for its operational stability. Both experimental and simulation studies have been meticulously conducted to benchmark the performance of the MPDP controller against the conventional proportional-integral-derivative controller, which serves as a widely adopted baseline in the field. The results unequivocally demonstrate the superiority of the MPDP controller across multiple dimensions. It exhibits exceptional robustness, resulting in a smaller steady-state tracking error, a critical advantage when addressing inherent uncertainties and external disturbances that can perturb the robot system. This translates to a more stable trajectory tracking performance. Furthermore, the MPDP controller empowers the robot with the capability to precisely follow predefined trajectories, thus ensuring high-precision and reliable execution of tasks. This feature significantly contributes to an overall enhancement of system performance and productivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuqian完成签到,获得积分10
刚刚
暴躁的香旋完成签到,获得积分10
1秒前
1秒前
CHINA_C13发布了新的文献求助150
1秒前
2秒前
2秒前
3秒前
cat_head发布了新的文献求助10
3秒前
Sally完成签到,获得积分10
4秒前
L罗1完成签到,获得积分10
4秒前
浮游应助zz采纳,获得10
4秒前
4秒前
ding应助Windycityguy采纳,获得10
5秒前
青青发布了新的文献求助10
5秒前
6秒前
6秒前
个性的紫菜应助雨寒采纳,获得50
6秒前
7秒前
zhuzhu发布了新的文献求助10
7秒前
奋斗映寒完成签到,获得积分10
7秒前
7秒前
Breathe发布了新的文献求助10
7秒前
淡然的冰海完成签到,获得积分10
8秒前
yanyimeng发布了新的文献求助10
8秒前
猫的淡淡发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
刻苦的三问应助热情蜗牛采纳,获得10
10秒前
搜集达人应助kkkkkkkk采纳,获得10
10秒前
情怀应助yutian928采纳,获得10
11秒前
爆米花应助彭泽林采纳,获得10
11秒前
ffw1发布了新的文献求助10
12秒前
12秒前
呆萌的正豪完成签到,获得积分10
12秒前
12秒前
12秒前
阿鸢发布了新的文献求助20
12秒前
无昵称完成签到 ,获得积分10
12秒前
科研通AI6应助我爱乒乓球采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403