Machine Learning and CT Texture Features in Ex-smokers with no CT Evidence of Emphysema and Mildly Abnormal Diffusing Capacity

DLCO公司 医学 肺活量测定 扩散能力 慢性阻塞性肺病 肺容积 曲线下面积 放射科 核医学 心脏病学 内科学 肺功能 哮喘
作者
Maksym Sharma,Miranda Kirby,David G. McCormack,Grace Párraga
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (6): 2567-2578 被引量:3
标识
DOI:10.1016/j.acra.2023.11.022
摘要

Ex-smokers without spirometry or CT evidence of chronic obstructive pulmonary disease (COPD) but with mildly abnormal diffusing capacity of the lungs for carbon monoxide (DLCO) are at higher risk of developing COPD. It remains difficult to make clinical management decisions for such ex-smokers without other objective assessments consistent with COPD. Hence, our objective was to develop a machine-learning and CT texture-analysis pipeline to dichotomize ex-smokers with normal and abnormal DLCO (DLCO≥75%pred and DLCO<75%pred).In this retrospective study, 71 ex-smokers (50-85yrs) without COPD underwent spirometry, plethysmography, thoracic CT, and 3He MRI to generate ventilation defect percent (VDP) and apparent diffusion coefficients (ADC). PyRadiomics was utilized to extract 496 CT texture-features; Boruta and principal component analysis were used for feature selection and various models were investigated for classification. Machine-learning classifiers were evaluated using area under the receiver operator characteristic curve (AUC), sensitivity, specificity, and F1-measure.Of 71 ex-smokers without COPD, 29 with mildly abnormal DLCO had significantly different MRI ADC (p < .001), residual-volume to total-lung-capacity ratio (p = .003), St. George's Respiratory Questionnaire (p = .029), and six-minute-walk distance (6MWD) (p < .001), but similar relative area of the lung < -950 Hounsfield-units (RA950) (p = .9) compared to 42 ex-smokers with normal DLCO. Logistic-regression machine-learning mixed-model trained on selected texture-features achieved the best classification accuracy of 87%. All clinical and imaging measurements were outperformed by high-high-pass filter high-gray-level-run-emphasis texture-feature (AUC=0.81), which correlated with DLCO (ρ = -0.29, p = .02), MRI ADC (ρ = 0.23, p = .048), and 6MWD (ρ = -0.25, p = .02).In ex-smokers with no CT evidence of emphysema, machine-learning models exclusively trained on CT texture-features accurately classified ex-smokers with abnormal diffusing capacity, outperforming conventional quantitative CT measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
里予完成签到,获得积分10
2秒前
3秒前
科研通AI2S应助荆轲刺秦王采纳,获得10
3秒前
激昂的又琴完成签到,获得积分10
3秒前
4秒前
积极的笙发布了新的文献求助10
5秒前
5秒前
5秒前
淡然的糖豆完成签到 ,获得积分10
5秒前
6秒前
sunn完成签到,获得积分10
7秒前
清新的Q发布了新的文献求助10
7秒前
科目三应助安然采纳,获得10
7秒前
8秒前
abc完成签到 ,获得积分10
8秒前
司空豁发布了新的文献求助10
8秒前
样样子发布了新的文献求助10
9秒前
9秒前
TALE发布了新的文献求助10
9秒前
awwwer发布了新的文献求助10
10秒前
萧水白应助小陈爱科研采纳,获得10
10秒前
LY0430发布了新的文献求助10
10秒前
轻松小张完成签到,获得积分0
11秒前
12秒前
12秒前
乐乐应助bobo采纳,获得10
13秒前
光年完成签到,获得积分20
14秒前
14秒前
14秒前
要开心完成签到 ,获得积分10
16秒前
16秒前
孙雁哝完成签到,获得积分10
16秒前
白樱恋曲发布了新的文献求助20
16秒前
wonhui发布了新的文献求助10
17秒前
17秒前
焚风发布了新的文献求助10
17秒前
汉堡包应助困得晕乎乎采纳,获得10
17秒前
斯文败类应助djy采纳,获得10
17秒前
半夏彗发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502587
关于积分的说明 11108917
捐赠科研通 3233359
什么是DOI,文献DOI怎么找? 1787265
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122