A review of neuroimaging-based data-driven approach for Alzheimer’s disease heterogeneity analysis

神经影像学 神经科学 疾病 阿尔茨海默病 数据科学 计算机科学 医学 心理学 病理
作者
Lingyu Liu,Shen Sun,Wenjie Kang,Shuicai Wu,Lan Lin
出处
期刊:Reviews in The Neurosciences [De Gruyter]
卷期号:35 (2): 121-139 被引量:7
标识
DOI:10.1515/revneuro-2023-0033
摘要

Abstract Alzheimer’s disease (AD) is a complex form of dementia and due to its high phenotypic variability, its diagnosis and monitoring can be quite challenging. Biomarkers play a crucial role in AD diagnosis and monitoring, but interpreting these biomarkers can be problematic due to their spatial and temporal heterogeneity. Therefore, researchers are increasingly turning to imaging-based biomarkers that employ data-driven computational approaches to examine the heterogeneity of AD. In this comprehensive review article, we aim to provide health professionals with a comprehensive view of past applications of data-driven computational approaches in studying AD heterogeneity and planning future research directions. We first define and offer basic insights into different categories of heterogeneity analysis, including spatial heterogeneity, temporal heterogeneity, and spatial-temporal heterogeneity. Then, we scrutinize 22 articles relating to spatial heterogeneity, 14 articles relating to temporal heterogeneity, and five articles relating to spatial-temporal heterogeneity, highlighting the strengths and limitations of these strategies. Furthermore, we discuss the importance of understanding spatial heterogeneity in AD subtypes and their clinical manifestations, biomarkers for abnormal orderings and AD stages, the recent advancements in spatial-temporal heterogeneity analysis for AD, and the emerging role of omics data integration in advancing personalized diagnosis and treatment for AD patients. By emphasizing the significance of understanding AD heterogeneity, we hope to stimulate further research in this field to facilitate the development of personalized interventions for AD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶昔发布了新的文献求助10
2秒前
3秒前
川泽发布了新的文献求助10
3秒前
3秒前
4秒前
7秒前
jia完成签到 ,获得积分10
7秒前
7秒前
工大机械完成签到,获得积分10
7秒前
8秒前
哈哈哈发布了新的文献求助10
8秒前
平淡南霜发布了新的文献求助10
9秒前
Thing完成签到,获得积分10
9秒前
alex发布了新的文献求助10
9秒前
川泽完成签到,获得积分10
11秒前
Jesenia完成签到,获得积分10
11秒前
Angenstern完成签到 ,获得积分10
12秒前
xmsswph发布了新的文献求助10
12秒前
太阳也有情绪关注了科研通微信公众号
14秒前
14秒前
15秒前
SQXT应助科研通管家采纳,获得60
15秒前
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
ceeray23应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
liuliu应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
16秒前
16秒前
大模型应助你快睡吧采纳,获得10
16秒前
小黎快看发布了新的文献求助10
16秒前
田様应助哈哈哈采纳,获得10
19秒前
20秒前
xmsswph完成签到,获得积分20
21秒前
21秒前
笨笨完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
中和皇极应助GUGU采纳,获得10
25秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462725
求助须知:如何正确求助?哪些是违规求助? 3056239
关于积分的说明 9051164
捐赠科研通 2745868
什么是DOI,文献DOI怎么找? 1506668
科研通“疑难数据库(出版商)”最低求助积分说明 696188
邀请新用户注册赠送积分活动 695720