Deep Learning for Diagnostic Charting on Pediatric Panoramic Radiographs.

多余的 射线照相术 医学 牙科 口腔正畸科 人工智能 深度学习 卷积神经网络 计算机科学 放射科
作者
Emine Kaya,Hüseyin Gürkan Güneç,Elif Şeyda Ürkmez,Kader Cesur Aydın,Hasan F. Ateş
出处
期刊:PubMed
标识
DOI:10.3290/j.ijcd.b4200863
摘要

Artificial intelligence (AI) based systems are used in dentistry to make the diagnostic process more accurate and efficient. The objective of this study was to evaluate the performance of a deep learning program for detection and classification of dental structures and treatments on panoramic radiographs of pediatric patients. In total, 4821 anonymized panoramic radiographs of children aged between 5 and 13 years old were analyzed by YOLO V4, a CNN (Convolutional Neural Networks) based object detection model. The ability to make a correct diagnosis was tested samples from pediatric patients examined within the scope of the study. All statistical analyses were performed using SPSS 26.0 (IBM, Chicago, IL, USA). The YOLOV4 model diagnosed the immature teeth, permanent tooth germs and brackets successfully with the high F1 scores like 0.95, 0.90 and 0.76 respectively. Although this model achieved promising results, there were certain limitations for some dental structures and treatments including the filling, root canal treatment, supernumerary tooth. Our architecture achieved reliable results with some specific limitations for detecting dental structures and treatments. Detection of certain dental structures and previous dental treatments on pediatric panoramic x-rays by using a deep learning-based approach may provide early diagnosis of some dental anomalies and help dental practitioners to find more accurate treatment options by saving time and effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼呼夫人发布了新的文献求助10
刚刚
1秒前
1秒前
zzmp应助光亮向露采纳,获得20
1秒前
所所应助东东采纳,获得10
1秒前
自由马儿发布了新的文献求助10
1秒前
西瓜皮完成签到,获得积分10
1秒前
AJoe发布了新的文献求助10
2秒前
小一完成签到,获得积分10
2秒前
受伤不二发布了新的文献求助10
2秒前
2秒前
Z丶完成签到,获得积分10
2秒前
2秒前
3秒前
搞怪莫茗完成签到,获得积分10
3秒前
哦豁应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
12应助科研通管家采纳,获得20
4秒前
英姑应助Demon采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
mtt应助科研通管家采纳,获得20
5秒前
情怀应助科研通管家采纳,获得30
5秒前
yuanquaner发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
zzc完成签到,获得积分10
5秒前
5秒前
三九发布了新的文献求助10
5秒前
Z丶发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
科研通AI5应助mookie采纳,获得10
8秒前
ttc发布了新的文献求助10
8秒前
Jasper应助白之玉采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933807
求助须知:如何正确求助?哪些是违规求助? 4201872
关于积分的说明 13055364
捐赠科研通 3975957
什么是DOI,文献DOI怎么找? 2178625
邀请新用户注册赠送积分活动 1195002
关于科研通互助平台的介绍 1106406