Deep Learning for Diagnostic Charting on Pediatric Panoramic Radiographs.

多余的 射线照相术 医学 牙科 口腔正畸科 人工智能 深度学习 卷积神经网络 计算机科学 放射科
作者
Emine Kaya,Hüseyin Gürkan Güneç,Elif Şeyda Ürkmez,Kader Cesur Aydın,Hasan F. Ateş
出处
期刊:PubMed
标识
DOI:10.3290/j.ijcd.b4200863
摘要

Artificial intelligence (AI) based systems are used in dentistry to make the diagnostic process more accurate and efficient. The objective of this study was to evaluate the performance of a deep learning program for detection and classification of dental structures and treatments on panoramic radiographs of pediatric patients. In total, 4821 anonymized panoramic radiographs of children aged between 5 and 13 years old were analyzed by YOLO V4, a CNN (Convolutional Neural Networks) based object detection model. The ability to make a correct diagnosis was tested samples from pediatric patients examined within the scope of the study. All statistical analyses were performed using SPSS 26.0 (IBM, Chicago, IL, USA). The YOLOV4 model diagnosed the immature teeth, permanent tooth germs and brackets successfully with the high F1 scores like 0.95, 0.90 and 0.76 respectively. Although this model achieved promising results, there were certain limitations for some dental structures and treatments including the filling, root canal treatment, supernumerary tooth. Our architecture achieved reliable results with some specific limitations for detecting dental structures and treatments. Detection of certain dental structures and previous dental treatments on pediatric panoramic x-rays by using a deep learning-based approach may provide early diagnosis of some dental anomalies and help dental practitioners to find more accurate treatment options by saving time and effort.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZSZ完成签到,获得积分10
1秒前
木木发布了新的文献求助10
1秒前
1秒前
薏米lilili应助丸子采纳,获得10
2秒前
3秒前
3秒前
wang完成签到,获得积分10
4秒前
小李发布了新的文献求助10
4秒前
搜集达人应助Rita采纳,获得10
4秒前
北辰发布了新的文献求助10
4秒前
kermitds完成签到 ,获得积分10
5秒前
沐紫心完成签到 ,获得积分10
6秒前
6秒前
8秒前
彭于晏应助文艺的懿采纳,获得10
8秒前
8秒前
Ava应助yaoqiangshi采纳,获得20
9秒前
冰菱发布了新的文献求助10
10秒前
10秒前
祁白曼完成签到,获得积分10
11秒前
11秒前
王子瑞发布了新的文献求助10
13秒前
Jerry发布了新的文献求助10
13秒前
YYYCCCCC完成签到,获得积分10
13秒前
lalala完成签到,获得积分10
14秒前
14秒前
冒泡完成签到,获得积分10
14秒前
玖Nine发布了新的文献求助10
15秒前
15秒前
15秒前
17秒前
情怀应助Teragous采纳,获得10
18秒前
丘比特应助dzll采纳,获得10
18秒前
温暖亦玉发布了新的文献求助10
18秒前
一起顺遂完成签到,获得积分20
19秒前
特昂唐发布了新的文献求助10
20秒前
Aurora发布了新的文献求助10
20秒前
越瑟淳潔完成签到 ,获得积分10
21秒前
仓鼠球应助WFLLL采纳,获得20
21秒前
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144