VINS-FEN: Monocular Visual-Inertial SLAM Based on Feature Extraction Network

人工智能 特征提取 计算机科学 稳健性(进化) 卷积神经网络 计算机视觉 模式识别(心理学) 特征(语言学) 单眼 语言学 生物化学 基因 哲学 化学
作者
Ke Wang,Cheng Zhang,Di Su,Kai Sun,Zhan Tian
标识
DOI:10.1109/cmvit57620.2023.00025
摘要

Monocular visual-inertial simultaneous localization and mapping (SLAM) technology is able to be widely used to provide pose for unmanned aerial vehicles. It usually uses artificially designed feature points and descriptors as the feature and basis for image matching. However, it is easy to cause the problem of difficult feature extraction and feature matching error under uneven illumination and weak texture environment. In order to solve the above problems, this paper adopts the deep convolutional neural network (CNN) instead of traditional artificial design features to replace the traditional front end of visual-inertial system (VINS). My main work includes designing deep convolutional neural Network–Feature Extraction Network (FEN), for feature extraction, proposing a two-stage matching strategy, and porting the above improvements to the front end of VINS to form a complete system. Finally, verification is conducted on HPatches dataset and EuRoc dataset. The experimental results show that FEN is 3%~23% higher than the traditional method in repeatability and accuracy of extracting feature points. The VINS with FEN as the front end has stronger robustness and improves localization accuracy by 17.3% under uneven illumination and weak texture conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stiger应助科研通管家采纳,获得30
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
核桃应助科研通管家采纳,获得30
刚刚
stiger应助科研通管家采纳,获得30
刚刚
微糖应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
雨雨应助科研通管家采纳,获得10
刚刚
核桃应助科研通管家采纳,获得30
刚刚
刚刚
微糖应助科研通管家采纳,获得10
刚刚
刚刚
雨雨应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得30
刚刚
刚刚
核桃应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
小二郎应助科研通管家采纳,获得30
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
核桃应助科研通管家采纳,获得30
刚刚
英姑应助科研通管家采纳,获得10
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
微糖应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
微糖应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
mengtingmei应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助huibzh采纳,获得10
1秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071