已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reading Various Types of Pointer Meters Under Extreme Motion Blur

运动模糊 去模糊 计算机视觉 计算机科学 人工智能 指针(用户界面) 分割 图像复原 图像处理 图像(数学)
作者
H. Zhang,Yunbo Rao,Jie Shao,Fanman Meng,Jiansu Pu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:2
标识
DOI:10.1109/tim.2023.3290962
摘要

Automatically reading pointer meters using deep learning has yielded promising results with high precision. However, existing methods ignore the interference with the camera brought by moving devices (e.g., patrol robots and drones), thus the persistent motion blur caused by the camera shake is not properly addressed. It is noteworthy that reading the pointer meter relies heavily on semantic segmentation of the scale and pointer within the meter. However, this can be challenging in extreme motion blur and diverse substation scenes. Moreover, reading various types of pointer meters and out-of-range pointer check remain tough issues. Thus, in this study, a full pipeline is proposed to solve the problems mentioned above. Firstly, Filter-Deblur-U-net (FD-U-net) is proposed to ensure accurate segmentation under motion blur. To be specific, FD-U-net is a one-stage network consisting of a deblurring module and a segmentation module. The segmentation loss supervises the optimization of deblurring module. And the proposed High Frequency Residual Attention (HFRA) in FD-U-net meticulously refines the details of motion-blurred image at the texture accumulated stage. Furthermore, the Judgement-Reading-Algorithm (JRA) is developed to complete readings of 35 types of meters. To ensure practical application, we propose the data augmentation strategy called Motion-Blur-MixUp (MB-MixUp) to maintain precise meter localization under motion blur. Additionally, we propose a method called Dark Channel Prior Dehaze Laplace (DCPD-Laplace) to determine whether the meter patch is motion-blurred. Experimental results have demonstrated the whole pipeline achieves state-of-the-art performance with average relative error and average reference error of only 1.54% and 0.48%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fxx完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
脑洞疼应助Aaaaa采纳,获得10
10秒前
xiaolang2004完成签到,获得积分10
13秒前
ILS完成签到 ,获得积分10
14秒前
Calyn完成签到 ,获得积分0
15秒前
汉堡包应助霸气的金鱼采纳,获得10
18秒前
19秒前
YL完成签到 ,获得积分10
20秒前
21秒前
MCRing完成签到,获得积分10
22秒前
陈老太完成签到 ,获得积分10
27秒前
mos2完成签到,获得积分20
28秒前
nina完成签到 ,获得积分10
29秒前
ttzziy完成签到 ,获得积分10
30秒前
30秒前
哲000完成签到 ,获得积分10
30秒前
33秒前
三块石头发布了新的文献求助10
35秒前
轻舟完成签到,获得积分10
35秒前
平常的羊完成签到 ,获得积分10
36秒前
形心1431发布了新的文献求助30
37秒前
zzzq完成签到 ,获得积分10
37秒前
38秒前
40秒前
单纯的又菱完成签到,获得积分10
42秒前
念姬发布了新的文献求助10
42秒前
于清绝完成签到 ,获得积分10
43秒前
韦远侵完成签到 ,获得积分10
43秒前
董艳蒙关注了科研通微信公众号
43秒前
44秒前
有川洋一完成签到 ,获得积分10
47秒前
ZZzz完成签到,获得积分10
48秒前
大个应助Jiaowen采纳,获得10
48秒前
传奇3应助xiaixax采纳,获得10
49秒前
52秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963128
求助须知:如何正确求助?哪些是违规求助? 3509015
关于积分的说明 11144752
捐赠科研通 3242023
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873115
科研通“疑难数据库(出版商)”最低求助积分说明 803621