Reading Various Types of Pointer Meters Under Extreme Motion Blur

运动模糊 去模糊 计算机视觉 计算机科学 人工智能 指针(用户界面) 分割 图像复原 图像处理 图像(数学)
作者
H. Zhang,Yunbo Rao,Jie Shao,Fanman Meng,Jiansu Pu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:2
标识
DOI:10.1109/tim.2023.3290962
摘要

Automatically reading pointer meters using deep learning has yielded promising results with high precision. However, existing methods ignore the interference with the camera brought by moving devices (e.g., patrol robots and drones), thus the persistent motion blur caused by the camera shake is not properly addressed. It is noteworthy that reading the pointer meter relies heavily on semantic segmentation of the scale and pointer within the meter. However, this can be challenging in extreme motion blur and diverse substation scenes. Moreover, reading various types of pointer meters and out-of-range pointer check remain tough issues. Thus, in this study, a full pipeline is proposed to solve the problems mentioned above. Firstly, Filter-Deblur-U-net (FD-U-net) is proposed to ensure accurate segmentation under motion blur. To be specific, FD-U-net is a one-stage network consisting of a deblurring module and a segmentation module. The segmentation loss supervises the optimization of deblurring module. And the proposed High Frequency Residual Attention (HFRA) in FD-U-net meticulously refines the details of motion-blurred image at the texture accumulated stage. Furthermore, the Judgement-Reading-Algorithm (JRA) is developed to complete readings of 35 types of meters. To ensure practical application, we propose the data augmentation strategy called Motion-Blur-MixUp (MB-MixUp) to maintain precise meter localization under motion blur. Additionally, we propose a method called Dark Channel Prior Dehaze Laplace (DCPD-Laplace) to determine whether the meter patch is motion-blurred. Experimental results have demonstrated the whole pipeline achieves state-of-the-art performance with average relative error and average reference error of only 1.54% and 0.48%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烦烦完成签到,获得积分10
1秒前
尔池发布了新的文献求助10
2秒前
orixero应助upupup采纳,获得10
2秒前
2秒前
syh完成签到,获得积分10
2秒前
2秒前
一只百味鸡完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
欣喜书易完成签到 ,获得积分10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得80
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
小杭76应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得30
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
追寻听云应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352