Semantic-Aware Adversarial Training for Reliable Deep Hashing Retrieval

计算机科学 对抗制 深度学习 人工智能 散列函数 判别式 机器学习 稳健性(进化) 理论计算机科学 计算机安全 生物化学 基因 化学
作者
Yuan Xu,Zheng Zhang,Xunguang Wang,Lin Wu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4681-4694 被引量:29
标识
DOI:10.1109/tifs.2023.3297791
摘要

Deep hashing has been intensively studied and successfully applied in\nlarge-scale image retrieval systems due to its efficiency and effectiveness.\nRecent studies have recognized that the existence of adversarial examples poses\na security threat to deep hashing models, that is, adversarial vulnerability.\nNotably, it is challenging to efficiently distill reliable semantic\nrepresentatives for deep hashing to guide adversarial learning, and thereby it\nhinders the enhancement of adversarial robustness of deep hashing-based\nretrieval models. Moreover, current researches on adversarial training for deep\nhashing are hard to be formalized into a unified minimax structure. In this\npaper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the\nadversarial robustness of deep hashing models. Specifically, we conceive a\ndiscriminative mainstay features learning (DMFL) scheme to construct semantic\nrepresentatives for guiding adversarial learning in deep hashing. Particularly,\nour DMFL with the strict theoretical guarantee is adaptively optimized in a\ndiscriminative learning manner, where both discriminative and semantic\nproperties are jointly considered. Moreover, adversarial examples are\nfabricated by maximizing the Hamming distance between the hash codes of\nadversarial samples and mainstay features, the efficacy of which is validated\nin the adversarial attack trials. Further, we, for the first time, formulate\nthe formalized adversarial training of deep hashing into a unified minimax\noptimization under the guidance of the generated mainstay codes. Extensive\nexperiments on benchmark datasets show superb attack performance against the\nstate-of-the-art algorithms, meanwhile, the proposed adversarial training can\neffectively eliminate adversarial perturbations for trustworthy deep\nhashing-based retrieval. Our code is available at\nhttps://github.com/xandery-geek/SAAT.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助夕荀采纳,获得10
刚刚
无限小霜完成签到,获得积分10
刚刚
DreamMaker应助LV采纳,获得10
刚刚
星辰大海应助LV采纳,获得30
刚刚
刚刚
赘婿应助酥酥脆采纳,获得10
1秒前
哇塞爹发布了新的文献求助10
1秒前
打打应助扬子采纳,获得10
1秒前
cocobear完成签到 ,获得积分10
2秒前
Lucas应助Xide采纳,获得30
2秒前
2秒前
李佳楠完成签到,获得积分20
2秒前
ggp完成签到,获得积分0
2秒前
自行车v完成签到,获得积分10
2秒前
2秒前
hhhh完成签到 ,获得积分10
3秒前
早川木槿完成签到,获得积分10
3秒前
Kauio完成签到,获得积分10
4秒前
aaabbb发布了新的文献求助10
4秒前
研友_VZG7GZ应助Daisy采纳,获得10
4秒前
缥缈书本完成签到 ,获得积分10
4秒前
obto完成签到,获得积分20
4秒前
campus完成签到,获得积分10
4秒前
LT完成签到,获得积分10
5秒前
JamesPei应助粱乘风采纳,获得10
5秒前
夏竟添完成签到,获得积分10
5秒前
AA18236931952发布了新的文献求助10
5秒前
murmur完成签到,获得积分10
5秒前
李佳楠发布了新的文献求助10
5秒前
小包完成签到,获得积分10
6秒前
6秒前
哇哇哇完成签到 ,获得积分10
6秒前
寒冷茈完成签到,获得积分20
6秒前
WW完成签到,获得积分10
7秒前
满锅发布了新的文献求助10
7秒前
7秒前
阳阳语晗完成签到,获得积分10
7秒前
留胡子的书白完成签到,获得积分10
7秒前
7秒前
LX发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005