Semantic-Aware Adversarial Training for Reliable Deep Hashing Retrieval

计算机科学 对抗制 深度学习 人工智能 散列函数 判别式 机器学习 稳健性(进化) 理论计算机科学 计算机安全 生物化学 基因 化学
作者
Yuan Xu,Zheng Zhang,Xunguang Wang,Lin Wu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4681-4694 被引量:11
标识
DOI:10.1109/tifs.2023.3297791
摘要

Deep hashing has been intensively studied and successfully applied in large-scale image retrieval systems due to its efficiency and effectiveness. Recent studies have recognized that the existence of adversarial examples poses a security threat to deep hashing models, that is, adversarial vulnerability. Notably, it is challenging to efficiently distill reliable semantic representatives for deep hashing to guide adversarial learning, and thereby it hinders the enhancement of adversarial robustness of deep hashing-based retrieval models. Moreover, current researches on adversarial training for deep hashing are hard to be formalized into a unified minimax structure. In this paper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the adversarial robustness of deep hashing models. Specifically, we conceive a discriminative mainstay features learning (DMFL) scheme to construct semantic representatives for guiding adversarial learning in deep hashing. Particularly, our DMFL with the strict theoretical guarantee is adaptively optimized in a discriminative learning manner, where both discriminative and semantic properties are jointly considered. Moreover, adversarial examples are fabricated by maximizing the Hamming distance between the hash codes of adversarial samples and mainstay features, the efficacy of which is validated in the adversarial attack trials. Further, we, for the first time , formulate the formalized adversarial training of deep hashing into a unified minimax optimization under the guidance of the generated mainstay codes. Extensive experiments on benchmark datasets show superb attack performance against the state-of-the-art algorithms, meanwhile, the proposed adversarial training can effectively eliminate adversarial perturbations for trustworthy deep hashing-based retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助南宫书瑶采纳,获得10
2秒前
3秒前
whatever发布了新的文献求助10
4秒前
orixero应助小新采纳,获得10
4秒前
DDDDDU发布了新的文献求助30
5秒前
5秒前
6秒前
Zzl0281发布了新的文献求助10
6秒前
清爽冰夏发布了新的文献求助10
9秒前
10秒前
10秒前
蓝莓西西果冻完成签到 ,获得积分10
12秒前
13秒前
丘比特应助小时采纳,获得10
13秒前
无尽夏发布了新的文献求助10
14秒前
爆米花应助tw0125采纳,获得10
14秒前
cyt9999发布了新的文献求助20
15秒前
15秒前
whatever完成签到,获得积分10
16秒前
16秒前
故意的严青完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
18秒前
Gump发布了新的文献求助10
18秒前
搞怪灯泡完成签到,获得积分10
19秒前
比耶发布了新的文献求助10
19秒前
20秒前
无尽夏完成签到,获得积分10
22秒前
晓晓马儿发布了新的文献求助10
22秒前
大个应助陈陈采纳,获得10
22秒前
今昔完成签到,获得积分10
22秒前
23秒前
cy发布了新的文献求助10
23秒前
24秒前
追梦完成签到,获得积分10
24秒前
经过发布了新的文献求助10
24秒前
24秒前
曲鸿博发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003393
求助须知:如何正确求助?哪些是违规求助? 4248127
关于积分的说明 13235358
捐赠科研通 4047157
什么是DOI,文献DOI怎么找? 2214214
邀请新用户注册赠送积分活动 1224290
关于科研通互助平台的介绍 1144540