Semantic-Aware Adversarial Training for Reliable Deep Hashing Retrieval

计算机科学 对抗制 深度学习 人工智能 散列函数 判别式 机器学习 稳健性(进化) 理论计算机科学 计算机安全 生物化学 基因 化学
作者
Yuan Xu,Zheng Zhang,Xunguang Wang,Lin Wu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4681-4694 被引量:7
标识
DOI:10.1109/tifs.2023.3297791
摘要

Deep hashing has been intensively studied and successfully applied in large-scale image retrieval systems due to its efficiency and effectiveness. Recent studies have recognized that the existence of adversarial examples poses a security threat to deep hashing models, that is, adversarial vulnerability. Notably, it is challenging to efficiently distill reliable semantic representatives for deep hashing to guide adversarial learning, and thereby it hinders the enhancement of adversarial robustness of deep hashing-based retrieval models. Moreover, current researches on adversarial training for deep hashing are hard to be formalized into a unified minimax structure. In this paper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the adversarial robustness of deep hashing models. Specifically, we conceive a discriminative mainstay features learning (DMFL) scheme to construct semantic representatives for guiding adversarial learning in deep hashing. Particularly, our DMFL with the strict theoretical guarantee is adaptively optimized in a discriminative learning manner, where both discriminative and semantic properties are jointly considered. Moreover, adversarial examples are fabricated by maximizing the Hamming distance between the hash codes of adversarial samples and mainstay features, the efficacy of which is validated in the adversarial attack trials. Further, we, for the first time, formulate the formalized adversarial training of deep hashing into a unified minimax optimization under the guidance of the generated mainstay codes. Extensive experiments on benchmark datasets show superb attack performance against the state-of-the-art algorithms, meanwhile, the proposed adversarial training can effectively eliminate adversarial perturbations for trustworthy deep hashing-based retrieval. Our code is available at https://github.com/xandery-geek/SAAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梓ccc发布了新的文献求助30
1秒前
丘比特应助勇往直前采纳,获得10
2秒前
早发论文应助actor2006采纳,获得10
2秒前
嘟嘟嘟发布了新的文献求助30
3秒前
3秒前
4秒前
5秒前
asdfqwer应助Ken采纳,获得10
6秒前
涂涂完成签到 ,获得积分10
6秒前
田様应助马千亦采纳,获得10
7秒前
活力寻菱完成签到 ,获得积分10
7秒前
IAMXC发布了新的文献求助10
7秒前
快乐听南完成签到 ,获得积分10
8秒前
8秒前
许诺发布了新的文献求助10
8秒前
李爱国应助Kinsuo采纳,获得10
8秒前
王大可发布了新的文献求助10
8秒前
害羞龙猫完成签到 ,获得积分10
9秒前
共享精神应助laiyongqiang采纳,获得10
10秒前
曙光发布了新的文献求助10
11秒前
郝宝真发布了新的文献求助10
12秒前
13秒前
haizz完成签到 ,获得积分10
14秒前
马戏团小丑完成签到 ,获得积分10
15秒前
完美的海完成签到 ,获得积分0
15秒前
SUO完成签到,获得积分10
16秒前
17秒前
萧水白发布了新的文献求助100
18秒前
lemono_o完成签到,获得积分10
18秒前
18秒前
19秒前
烟花应助更深的蓝911采纳,获得10
19秒前
20秒前
芽芽豆完成签到 ,获得积分10
20秒前
和平港湾发布了新的文献求助10
20秒前
NOBODY完成签到,获得积分10
21秒前
王大可完成签到,获得积分10
23秒前
梓ccc发布了新的文献求助30
23秒前
24秒前
华仔应助勇往直前采纳,获得30
25秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Colloidal Synthesis of Plasmonic Nanometals 500
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587