已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semantic-Aware Adversarial Training for Reliable Deep Hashing Retrieval

计算机科学 对抗制 深度学习 人工智能 散列函数 判别式 机器学习 稳健性(进化) 理论计算机科学 计算机安全 生物化学 基因 化学
作者
Yuan Xu,Zheng Zhang,Xunguang Wang,Lin Wu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4681-4694 被引量:29
标识
DOI:10.1109/tifs.2023.3297791
摘要

Deep hashing has been intensively studied and successfully applied in\nlarge-scale image retrieval systems due to its efficiency and effectiveness.\nRecent studies have recognized that the existence of adversarial examples poses\na security threat to deep hashing models, that is, adversarial vulnerability.\nNotably, it is challenging to efficiently distill reliable semantic\nrepresentatives for deep hashing to guide adversarial learning, and thereby it\nhinders the enhancement of adversarial robustness of deep hashing-based\nretrieval models. Moreover, current researches on adversarial training for deep\nhashing are hard to be formalized into a unified minimax structure. In this\npaper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the\nadversarial robustness of deep hashing models. Specifically, we conceive a\ndiscriminative mainstay features learning (DMFL) scheme to construct semantic\nrepresentatives for guiding adversarial learning in deep hashing. Particularly,\nour DMFL with the strict theoretical guarantee is adaptively optimized in a\ndiscriminative learning manner, where both discriminative and semantic\nproperties are jointly considered. Moreover, adversarial examples are\nfabricated by maximizing the Hamming distance between the hash codes of\nadversarial samples and mainstay features, the efficacy of which is validated\nin the adversarial attack trials. Further, we, for the first time, formulate\nthe formalized adversarial training of deep hashing into a unified minimax\noptimization under the guidance of the generated mainstay codes. Extensive\nexperiments on benchmark datasets show superb attack performance against the\nstate-of-the-art algorithms, meanwhile, the proposed adversarial training can\neffectively eliminate adversarial perturbations for trustworthy deep\nhashing-based retrieval. Our code is available at\nhttps://github.com/xandery-geek/SAAT.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
井盖发发布了新的文献求助10
2秒前
一只大鸭梨完成签到,获得积分10
3秒前
思源应助gucci采纳,获得10
4秒前
4秒前
李健的粉丝团团长应助wei采纳,获得10
4秒前
LY发布了新的文献求助10
4秒前
11发布了新的文献求助10
6秒前
大个应助接受所有饼干采纳,获得10
7秒前
8秒前
称心剑鬼发布了新的文献求助10
9秒前
9秒前
Lukomere发布了新的文献求助10
10秒前
楼醉山完成签到,获得积分10
12秒前
可爱的函函应助井盖发采纳,获得10
14秒前
caixukun发布了新的文献求助10
15秒前
猫小乐C完成签到,获得积分10
15秒前
guojingjing发布了新的文献求助10
16秒前
定位心海的锚完成签到,获得积分10
17秒前
称心剑鬼完成签到,获得积分10
18秒前
zhou269完成签到,获得积分10
18秒前
jinan完成签到,获得积分10
19秒前
20秒前
23秒前
jinan发布了新的文献求助10
24秒前
Criminology34举报饼饼求助涉嫌违规
24秒前
24秒前
25秒前
25秒前
天天快乐应助keke采纳,获得10
29秒前
科研通AI6应助Lyon采纳,获得10
30秒前
31秒前
汉堡包应助如意修洁采纳,获得10
32秒前
gucci发布了新的文献求助10
32秒前
34秒前
34秒前
可爱从霜发布了新的文献求助10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355874
求助须知:如何正确求助?哪些是违规求助? 4487717
关于积分的说明 13970886
捐赠科研通 4388491
什么是DOI,文献DOI怎么找? 2411104
邀请新用户注册赠送积分活动 1403650
关于科研通互助平台的介绍 1377279