已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semantic-Aware Adversarial Training for Reliable Deep Hashing Retrieval

计算机科学 对抗制 深度学习 人工智能 散列函数 判别式 机器学习 稳健性(进化) 理论计算机科学 计算机安全 生物化学 化学 基因
作者
Yuan Xu,Zheng Zhang,Xunguang Wang,Lin Wu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4681-4694 被引量:11
标识
DOI:10.1109/tifs.2023.3297791
摘要

Deep hashing has been intensively studied and successfully applied in large-scale image retrieval systems due to its efficiency and effectiveness. Recent studies have recognized that the existence of adversarial examples poses a security threat to deep hashing models, that is, adversarial vulnerability. Notably, it is challenging to efficiently distill reliable semantic representatives for deep hashing to guide adversarial learning, and thereby it hinders the enhancement of adversarial robustness of deep hashing-based retrieval models. Moreover, current researches on adversarial training for deep hashing are hard to be formalized into a unified minimax structure. In this paper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the adversarial robustness of deep hashing models. Specifically, we conceive a discriminative mainstay features learning (DMFL) scheme to construct semantic representatives for guiding adversarial learning in deep hashing. Particularly, our DMFL with the strict theoretical guarantee is adaptively optimized in a discriminative learning manner, where both discriminative and semantic properties are jointly considered. Moreover, adversarial examples are fabricated by maximizing the Hamming distance between the hash codes of adversarial samples and mainstay features, the efficacy of which is validated in the adversarial attack trials. Further, we, for the first time , formulate the formalized adversarial training of deep hashing into a unified minimax optimization under the guidance of the generated mainstay codes. Extensive experiments on benchmark datasets show superb attack performance against the state-of-the-art algorithms, meanwhile, the proposed adversarial training can effectively eliminate adversarial perturbations for trustworthy deep hashing-based retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助直率媚颜采纳,获得10
1秒前
lvsehx完成签到,获得积分10
5秒前
Cookiee发布了新的文献求助10
5秒前
8秒前
兔子发布了新的文献求助10
8秒前
9秒前
9秒前
于玕发布了新的文献求助10
12秒前
yy发布了新的文献求助10
13秒前
yydragen应助struggling采纳,获得70
15秒前
思源应助博修采纳,获得10
15秒前
15秒前
赘婿应助导师老八采纳,获得10
15秒前
雪白蚂蚁完成签到,获得积分20
17秒前
小蘑菇应助LINDY采纳,获得30
19秒前
Sensons完成签到,获得积分10
19秒前
LLX发布了新的文献求助10
20秒前
llnysl完成签到 ,获得积分10
21秒前
给好评发布了新的文献求助20
22秒前
Dyying发布了新的文献求助50
23秒前
25秒前
西瓜完成签到 ,获得积分10
25秒前
无私的含海完成签到,获得积分10
26秒前
28秒前
天天快乐应助威武的凡双采纳,获得10
29秒前
31秒前
博修发布了新的文献求助10
32秒前
蜀黍完成签到 ,获得积分10
32秒前
六初完成签到 ,获得积分10
32秒前
导师老八发布了新的文献求助10
32秒前
火星上紫山完成签到 ,获得积分10
33秒前
34秒前
ak发布了新的文献求助10
35秒前
36秒前
墨尘发布了新的文献求助30
37秒前
hwen1998完成签到 ,获得积分10
39秒前
华仔应助动生电动势采纳,获得30
40秒前
hanzhua132发布了新的文献求助10
41秒前
42秒前
66289完成签到 ,获得积分10
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963003
求助须知:如何正确求助?哪些是违规求助? 3508926
关于积分的说明 11144142
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791703
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803603