已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semantic-Aware Adversarial Training for Reliable Deep Hashing Retrieval

计算机科学 对抗制 深度学习 人工智能 散列函数 判别式 机器学习 稳健性(进化) 理论计算机科学 计算机安全 生物化学 化学 基因
作者
Yuan Xu,Zheng Zhang,Xunguang Wang,Lin Wu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4681-4694 被引量:29
标识
DOI:10.1109/tifs.2023.3297791
摘要

Deep hashing has been intensively studied and successfully applied in\nlarge-scale image retrieval systems due to its efficiency and effectiveness.\nRecent studies have recognized that the existence of adversarial examples poses\na security threat to deep hashing models, that is, adversarial vulnerability.\nNotably, it is challenging to efficiently distill reliable semantic\nrepresentatives for deep hashing to guide adversarial learning, and thereby it\nhinders the enhancement of adversarial robustness of deep hashing-based\nretrieval models. Moreover, current researches on adversarial training for deep\nhashing are hard to be formalized into a unified minimax structure. In this\npaper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the\nadversarial robustness of deep hashing models. Specifically, we conceive a\ndiscriminative mainstay features learning (DMFL) scheme to construct semantic\nrepresentatives for guiding adversarial learning in deep hashing. Particularly,\nour DMFL with the strict theoretical guarantee is adaptively optimized in a\ndiscriminative learning manner, where both discriminative and semantic\nproperties are jointly considered. Moreover, adversarial examples are\nfabricated by maximizing the Hamming distance between the hash codes of\nadversarial samples and mainstay features, the efficacy of which is validated\nin the adversarial attack trials. Further, we, for the first time, formulate\nthe formalized adversarial training of deep hashing into a unified minimax\noptimization under the guidance of the generated mainstay codes. Extensive\nexperiments on benchmark datasets show superb attack performance against the\nstate-of-the-art algorithms, meanwhile, the proposed adversarial training can\neffectively eliminate adversarial perturbations for trustworthy deep\nhashing-based retrieval. Our code is available at\nhttps://github.com/xandery-geek/SAAT.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhuo完成签到,获得积分10
刚刚
李国铭发布了新的文献求助10
4秒前
连翘完成签到,获得积分10
5秒前
pgojpogk发布了新的文献求助20
5秒前
自觉醉薇发布了新的文献求助10
5秒前
6秒前
果果完成签到 ,获得积分10
7秒前
husthenry完成签到,获得积分10
8秒前
我是老大应助Frank采纳,获得10
8秒前
去2完成签到 ,获得积分10
9秒前
阮叮叮发布了新的文献求助10
10秒前
香蕉觅云应助啊啊采纳,获得10
10秒前
12秒前
高高的笑柳完成签到,获得积分10
12秒前
12秒前
滴滴完成签到 ,获得积分20
13秒前
七濑发布了新的文献求助10
15秒前
归尘应助endlessloop采纳,获得30
17秒前
今后应助钟情紫色短裤采纳,获得10
17秒前
陈博文完成签到,获得积分20
17秒前
头发天涯完成签到 ,获得积分10
18秒前
20秒前
科研通AI6应助Doc采纳,获得10
21秒前
hushan53发布了新的文献求助10
22秒前
木落归本发布了新的文献求助50
24秒前
24秒前
26秒前
旺旺发布了新的文献求助10
27秒前
30秒前
30秒前
shareef发布了新的文献求助10
30秒前
啊啊发布了新的文献求助10
32秒前
llll完成签到,获得积分10
33秒前
星辰大海应助xiao采纳,获得10
33秒前
桃子发布了新的文献求助10
33秒前
36秒前
36秒前
rngay发布了新的文献求助10
36秒前
37秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449335
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263727
捐赠科研通 4480534
什么是DOI,文献DOI怎么找? 2454469
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1421016