Formation of various cell-aggregated structures in the core of hydrogel filament using a microfluidic device and its application as an in vitro neuromuscular junction model

C2C12型 微流控 体外 材料科学 组织工程 纳米技术 生物医学工程 生物物理学 肌发生 化学 生物 医学 生物化学
作者
Ju‐Yeon Kim,GeunHyung Kim
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:472: 144979-144979 被引量:1
标识
DOI:10.1016/j.cej.2023.144979
摘要

Microfluidic systems have been widely used in various in vitro tissue engineering models. In this paper, we present a new microfluidic system for manufacturing cell filaments laden with cell aggregates of various shapes (beads, rosaries, and filaments) in the core region. The structures were obtained using the Rayleigh-Plateau instability of the two-phase flow of the injected bioinks (continuous phase of collagen/poly[ethylene glycol] diacrylate [PEGDA] and a dispersed phase of methacrylated gelatin (GelMA)). To demonstrate the potential of the system at the neuromuscular junction in vitro model, we injected a C2C12-laden collagen/PEGDA bioink into the sheath region and GelMA mixed with motor neuron cells (NSC-34) into the core region of the fabricated cell aggregates. The rosary-shaped NSC-34 aggregate in the core exhibited higher cell viability and more developed neurogenic gene expression than the cell aggregates of beads and filaments in the core region, owing to much greater mechanotransduction. Furthermore, when comparing the cell-laden struts (C2C12 in the sheath region and NSC34 in the rosary core region) with normally bioprinted struts with the same cell density, the expressions of myogenesis-, neuromuscular junction (NMJ)-, and neurogenesis-related genes in struts laden with rosary-shaped cell aggregates were significantly upregulated. The results of these experiments demonstrate the potential for the fabrication of new cell-laden core-sheath structures, which could be used for designing various in vitro models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fugu0完成签到,获得积分10
1秒前
1秒前
1秒前
流觞曲水发布了新的文献求助10
2秒前
2秒前
1Yer6完成签到 ,获得积分10
2秒前
ada发布了新的文献求助10
3秒前
共享精神应助小小科研人采纳,获得10
4秒前
Sylvia完成签到,获得积分10
4秒前
00完成签到,获得积分20
6秒前
务实的菓完成签到 ,获得积分10
6秒前
吕健发布了新的文献求助10
7秒前
7秒前
果心纯完成签到,获得积分10
8秒前
8秒前
猜猜关注了科研通微信公众号
9秒前
Lin发布了新的文献求助10
9秒前
10秒前
自觉的火龙果完成签到,获得积分10
10秒前
十三同学完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
Lin完成签到,获得积分10
14秒前
样样子发布了新的文献求助10
15秒前
ll200207发布了新的文献求助10
17秒前
香蕉觅云应助奮斗采纳,获得10
18秒前
今后应助keyan采纳,获得10
18秒前
19秒前
19秒前
打打应助夜阑听风雨采纳,获得10
19秒前
00发布了新的文献求助10
20秒前
芝士完成签到 ,获得积分10
21秒前
uuh完成签到,获得积分10
21秒前
仁者完成签到,获得积分10
22秒前
可爱的函函应助达叔采纳,获得10
23秒前
23秒前
23秒前
26秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769645
求助须知:如何正确求助?哪些是违规求助? 3314713
关于积分的说明 10173349
捐赠科研通 3030002
什么是DOI,文献DOI怎么找? 1662548
邀请新用户注册赠送积分活动 795036
科研通“疑难数据库(出版商)”最低求助积分说明 756500