Functional Outcome Prediction in Acute Ischemic Stroke Using a Fused Imaging and Clinical Deep Learning Model

医学 改良兰金量表 磁共振成像 冲程(发动机) 队列 神经影像学 物理疗法 内科学 放射科 缺血性中风 缺血 机械工程 精神科 工程类
作者
Yongkai Liu,Yannan Yu,Jiahong Ouyang,Bin Jiang,Guang Yang,Sophie Ostmeier,Max Wintermark,Patrik Michel,David S. Liebeskind,Maarten G. Lansberg,Gregory W. Albers,Greg Zaharchuk
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:54 (9): 2316-2327 被引量:11
标识
DOI:10.1161/strokeaha.123.044072
摘要

BACKGROUND: Predicting long-term clinical outcome based on the early acute ischemic stroke information is valuable for prognostication, resource management, clinical trials, and patient expectations. Current methods require subjective decisions about which imaging features to assess and may require time-consuming postprocessing. This study’s goal was to predict ordinal 90-day modified Rankin Scale (mRS) score in acute ischemic stroke patients by fusing a Deep Learning model of diffusion-weighted imaging images and clinical information from the acute period. METHODS: A total of 640 acute ischemic stroke patients who underwent magnetic resonance imaging within 1 to 7 days poststroke and had 90-day mRS follow-up data were randomly divided into 70% (n=448) for model training, 15% (n=96) for validation, and 15% (n=96) for internal testing. Additionally, external testing on a cohort from Lausanne University Hospital (n=280) was performed to further evaluate model generalization. Accuracy for ordinal mRS, accuracy within ±1 mRS category, mean absolute prediction error, and determination of unfavorable outcome (mRS score >2) were evaluated for clinical only, imaging only, and 2 fused clinical-imaging models. RESULTS: The fused models demonstrated superior performance in predicting ordinal mRS score and unfavorable outcome in both internal and external test cohorts when compared with the clinical and imaging models. For the internal test cohort, the top fused model had the highest area under the curve of 0.92 for unfavorable outcome prediction and the lowest mean absolute error (0.96 [95% CI, 0.77–1.16]), with the highest proportion of mRS score predictions within ±1 category (79% [95% CI, 71%–88%]). On the external Lausanne University Hospital cohort, the best fused model had an area under the curve of 0.90 for unfavorable outcome prediction and outperformed other models with an mean absolute error of 0.90 (95% CI, 0.79–1.01), and the highest percentage of mRS score predictions within ±1 category (83% [95% CI, 78%–87%]). CONCLUSIONS: A Deep Learning-based imaging model fused with clinical variables can be used to predict 90-day stroke outcome with reduced subjectivity and user burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
67完成签到,获得积分10
刚刚
Cyber_relic完成签到,获得积分10
2秒前
dlynecust完成签到,获得积分10
4秒前
杰king发布了新的文献求助10
5秒前
6秒前
6秒前
8秒前
8秒前
lingo发布了新的文献求助20
10秒前
123发布了新的文献求助10
10秒前
小笼包发布了新的文献求助50
12秒前
13秒前
科研通AI2S应助111采纳,获得10
13秒前
13秒前
19秒前
科研通AI2S应助安戈采纳,获得10
19秒前
20秒前
23秒前
23秒前
kiki发布了新的文献求助10
24秒前
英俊的铭应助淡定鸿涛采纳,获得10
24秒前
蝌蚪完成签到,获得积分10
25秒前
大模型应助姜汁采纳,获得10
25秒前
27秒前
迷人的便当完成签到,获得积分10
27秒前
28秒前
30秒前
顾矜应助123采纳,获得10
30秒前
WangSiya完成签到 ,获得积分10
30秒前
爱学习的小花生完成签到,获得积分10
31秒前
zmy发布了新的文献求助10
31秒前
32秒前
32秒前
33秒前
NOBODY完成签到,获得积分10
34秒前
abcdulla777发布了新的文献求助10
35秒前
35秒前
九珥发布了新的文献求助10
37秒前
BKP发布了新的文献求助10
37秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124660
求助须知:如何正确求助?哪些是违规求助? 2774994
关于积分的说明 7724945
捐赠科研通 2430508
什么是DOI,文献DOI怎么找? 1291144
科研通“疑难数据库(出版商)”最低求助积分说明 622083
版权声明 600323