Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network

变压器 人工智能 计算机科学 人工神经网络 工程类 模式识别(心理学) 电压 电气工程
作者
Pengfei Liang,Zhuoze Yu,Bin Wang,Xuefang Xu,Jiaye Tian
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:57: 102075-102075 被引量:65
标识
DOI:10.1016/j.aei.2023.102075
摘要

Due to often working in the environment of variable speeds and loads, it is an enormous challenge to achieve high-accuracy fault diagnosis (FD) of rolling bearings (RB) via existing approaches. In the article, a novel FD approach of RB, named IVTN-SA, is proposed by integrating subdomain adaptation (SA) and an improved vision transformer network (IVTN). To begin with, a local maximum mean discrepancy is introduced to replace the popular distribution alignment strategy of the same fault type in different domains based on adversarial learning mechanism and global maximum mean discrepancy. Then, the traditional vision transformer net is improved by employing a deformable convolution (DC) module to replace plain counterparts in existing CNN architectures and using a recurrent neural network to obtain the position encoding adaptively. The proposed method makes full use of the strong ability of SA in domain adaptation, the distinctive advantage of DC on feature extraction based on local information and the excellent performance of vision transformer in representing complicated relationships based on global information, thus realizing the fusion of local and global information and overcoming the distribution difference caused by working condition fluctuation. Two experimental cases have been conducted to verify its effectiveness in various working conditions, and the results demonstrate our proposed approach can achieve more excellent performance on diagnosis accuracy and model complexity compared with existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭6666发布了新的文献求助10
刚刚
完美世界应助留胡子的火采纳,获得10
5秒前
脑洞疼应助郭6666采纳,获得10
5秒前
公冶愚志完成签到,获得积分10
8秒前
威武的皮卡丘完成签到,获得积分10
14秒前
14秒前
14秒前
大龙哥886应助ri_290采纳,获得10
15秒前
sevenhill应助Devastating采纳,获得10
17秒前
17秒前
今后应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得30
18秒前
拼搏应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得20
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
小新应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
鬼切关注了科研通微信公众号
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
无极微光应助科研通管家采纳,获得20
18秒前
scaler完成签到,获得积分10
19秒前
20秒前
xinbowey发布了新的文献求助10
20秒前
xiao完成签到 ,获得积分10
22秒前
23秒前
默默早晨完成签到 ,获得积分10
24秒前
yang发布了新的文献求助10
26秒前
科研通AI6应助Jodie采纳,获得10
28秒前
二次元喵酱完成签到,获得积分10
28秒前
xinbowey完成签到,获得积分10
28秒前
鬼切发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555