Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network

变压器 人工智能 计算机科学 人工神经网络 工程类 模式识别(心理学) 电压 电气工程
作者
Pengfei Liang,Zhuoze Yu,Bin Wang,Xuefang Xu,Jiaye Tian
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:57: 102075-102075 被引量:65
标识
DOI:10.1016/j.aei.2023.102075
摘要

Due to often working in the environment of variable speeds and loads, it is an enormous challenge to achieve high-accuracy fault diagnosis (FD) of rolling bearings (RB) via existing approaches. In the article, a novel FD approach of RB, named IVTN-SA, is proposed by integrating subdomain adaptation (SA) and an improved vision transformer network (IVTN). To begin with, a local maximum mean discrepancy is introduced to replace the popular distribution alignment strategy of the same fault type in different domains based on adversarial learning mechanism and global maximum mean discrepancy. Then, the traditional vision transformer net is improved by employing a deformable convolution (DC) module to replace plain counterparts in existing CNN architectures and using a recurrent neural network to obtain the position encoding adaptively. The proposed method makes full use of the strong ability of SA in domain adaptation, the distinctive advantage of DC on feature extraction based on local information and the excellent performance of vision transformer in representing complicated relationships based on global information, thus realizing the fusion of local and global information and overcoming the distribution difference caused by working condition fluctuation. Two experimental cases have been conducted to verify its effectiveness in various working conditions, and the results demonstrate our proposed approach can achieve more excellent performance on diagnosis accuracy and model complexity compared with existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇如天发布了新的文献求助10
刚刚
smalldesk发布了新的文献求助10
2秒前
Corilla完成签到,获得积分10
3秒前
时至发布了新的文献求助10
3秒前
Lion完成签到,获得积分10
4秒前
Wing完成签到 ,获得积分10
5秒前
5秒前
顺利的荔枝完成签到,获得积分10
8秒前
8秒前
无敌大裤衩完成签到,获得积分10
8秒前
英俊的铭应助smalldesk采纳,获得10
9秒前
SYLH应助dd采纳,获得10
9秒前
小肥羊发布了新的文献求助10
10秒前
11秒前
11秒前
搜集达人应助kk采纳,获得10
12秒前
汉堡包应助22222采纳,获得10
13秒前
15秒前
15秒前
冷酷茹妖关注了科研通微信公众号
15秒前
科研通AI2S应助HJJHJH采纳,获得10
15秒前
小肥羊完成签到,获得积分10
17秒前
17秒前
林雨完成签到,获得积分10
18秒前
深情安青应助1231采纳,获得10
18秒前
18秒前
清风完成签到,获得积分20
18秒前
19秒前
20秒前
小飞鱼完成签到,获得积分10
20秒前
独孤妖月发布了新的文献求助30
21秒前
21秒前
杨航完成签到,获得积分10
22秒前
果汁完成签到,获得积分10
23秒前
隐形曼青应助幽默的百川采纳,获得10
23秒前
23秒前
23秒前
23秒前
酷波er应助微风采纳,获得10
24秒前
麟钰发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971441
求助须知:如何正确求助?哪些是违规求助? 3516161
关于积分的说明 11181180
捐赠科研通 3251322
什么是DOI,文献DOI怎么找? 1795788
邀请新用户注册赠送积分活动 876026
科研通“疑难数据库(出版商)”最低求助积分说明 805228