Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network

变压器 人工智能 计算机科学 人工神经网络 工程类 模式识别(心理学) 电压 电气工程
作者
Pengfei Liang,Zhuoze Yu,Bin Wang,Xuefang Xu,Jiaye Tian
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:57: 102075-102075 被引量:65
标识
DOI:10.1016/j.aei.2023.102075
摘要

Due to often working in the environment of variable speeds and loads, it is an enormous challenge to achieve high-accuracy fault diagnosis (FD) of rolling bearings (RB) via existing approaches. In the article, a novel FD approach of RB, named IVTN-SA, is proposed by integrating subdomain adaptation (SA) and an improved vision transformer network (IVTN). To begin with, a local maximum mean discrepancy is introduced to replace the popular distribution alignment strategy of the same fault type in different domains based on adversarial learning mechanism and global maximum mean discrepancy. Then, the traditional vision transformer net is improved by employing a deformable convolution (DC) module to replace plain counterparts in existing CNN architectures and using a recurrent neural network to obtain the position encoding adaptively. The proposed method makes full use of the strong ability of SA in domain adaptation, the distinctive advantage of DC on feature extraction based on local information and the excellent performance of vision transformer in representing complicated relationships based on global information, thus realizing the fusion of local and global information and overcoming the distribution difference caused by working condition fluctuation. Two experimental cases have been conducted to verify its effectiveness in various working conditions, and the results demonstrate our proposed approach can achieve more excellent performance on diagnosis accuracy and model complexity compared with existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助wryyyn采纳,获得10
刚刚
刚刚
张欣童666完成签到,获得积分20
1秒前
上上下下发布了新的文献求助40
1秒前
2秒前
2秒前
3秒前
终梦发布了新的文献求助10
3秒前
葡萄树发布了新的文献求助10
3秒前
阿泽发布了新的文献求助10
3秒前
shi hui发布了新的文献求助10
4秒前
4秒前
chendh完成签到,获得积分10
4秒前
脑洞疼应助zzzzz采纳,获得10
5秒前
英姑应助科研门外汉采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
cnulee发布了新的文献求助10
6秒前
星辰大海应助张小马采纳,获得10
6秒前
li发布了新的文献求助10
7秒前
田様应助111采纳,获得30
7秒前
姜萌萌发布了新的文献求助10
7秒前
shanshanlaichi完成签到,获得积分20
7秒前
传奇3应助爱学习的杰杰杰采纳,获得10
7秒前
Jasper应助爱学习的杰杰杰采纳,获得10
7秒前
8秒前
Niki完成签到,获得积分10
9秒前
闵问柳发布了新的文献求助10
9秒前
luiii发布了新的文献求助10
10秒前
听话的巧荷完成签到,获得积分20
10秒前
10秒前
彭于晏应助姚姚姚采纳,获得10
10秒前
斗罗大陆发布了新的文献求助10
10秒前
王讯发布了新的文献求助10
11秒前
某某发布了新的文献求助10
11秒前
无花果应助M张采纳,获得10
11秒前
小蘑菇应助M张采纳,获得10
11秒前
烟花应助M张采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196280
求助须知:如何正确求助?哪些是违规求助? 4378008
关于积分的说明 13634839
捐赠科研通 4233464
什么是DOI,文献DOI怎么找? 2322279
邀请新用户注册赠送积分活动 1320400
关于科研通互助平台的介绍 1270764