Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network

变压器 人工智能 计算机科学 人工神经网络 工程类 模式识别(心理学) 电压 电气工程
作者
Pengfei Liang,Zhuoze Yu,Bin Wang,Xuefang Xu,Jiaye Tian
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:57: 102075-102075 被引量:65
标识
DOI:10.1016/j.aei.2023.102075
摘要

Due to often working in the environment of variable speeds and loads, it is an enormous challenge to achieve high-accuracy fault diagnosis (FD) of rolling bearings (RB) via existing approaches. In the article, a novel FD approach of RB, named IVTN-SA, is proposed by integrating subdomain adaptation (SA) and an improved vision transformer network (IVTN). To begin with, a local maximum mean discrepancy is introduced to replace the popular distribution alignment strategy of the same fault type in different domains based on adversarial learning mechanism and global maximum mean discrepancy. Then, the traditional vision transformer net is improved by employing a deformable convolution (DC) module to replace plain counterparts in existing CNN architectures and using a recurrent neural network to obtain the position encoding adaptively. The proposed method makes full use of the strong ability of SA in domain adaptation, the distinctive advantage of DC on feature extraction based on local information and the excellent performance of vision transformer in representing complicated relationships based on global information, thus realizing the fusion of local and global information and overcoming the distribution difference caused by working condition fluctuation. Two experimental cases have been conducted to verify its effectiveness in various working conditions, and the results demonstrate our proposed approach can achieve more excellent performance on diagnosis accuracy and model complexity compared with existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉笙墨染发布了新的文献求助10
刚刚
tikka完成签到,获得积分10
刚刚
1秒前
猪猪hero发布了新的文献求助10
1秒前
JJun完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
梦XING发布了新的文献求助10
3秒前
酷波er应助OKOK采纳,获得10
3秒前
七七发布了新的文献求助30
3秒前
我是老大应助xt采纳,获得10
4秒前
老穆关注了科研通微信公众号
5秒前
虚影发布了新的文献求助10
5秒前
yyl发布了新的文献求助10
5秒前
6秒前
Aime驳回了思源应助
6秒前
Vincenzo完成签到,获得积分10
7秒前
7秒前
豆豆发布了新的文献求助10
8秒前
9秒前
团装发布了新的文献求助10
9秒前
9秒前
爆米花应助小吴同志采纳,获得10
9秒前
zz发布了新的文献求助10
10秒前
Max哈哈哈完成签到,获得积分10
10秒前
07734发布了新的文献求助10
10秒前
11秒前
11秒前
七七完成签到,获得积分20
12秒前
Sun发布了新的文献求助10
12秒前
xt完成签到,获得积分10
13秒前
001完成签到 ,获得积分10
13秒前
13秒前
搜集达人应助Refuel采纳,获得10
13秒前
等等发布了新的文献求助10
13秒前
14秒前
14秒前
yujieshi发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974797
求助须知:如何正确求助?哪些是违规求助? 3519250
关于积分的说明 11197623
捐赠科研通 3255405
什么是DOI,文献DOI怎么找? 1797769
邀请新用户注册赠送积分活动 877156
科研通“疑难数据库(出版商)”最低求助积分说明 806202