Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network

变压器 人工智能 计算机科学 人工神经网络 工程类 模式识别(心理学) 电压 电气工程
作者
Pengfei Liang,Zhuoze Yu,Bin Wang,Xuefang Xu,Jiaye Tian
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:57: 102075-102075 被引量:65
标识
DOI:10.1016/j.aei.2023.102075
摘要

Due to often working in the environment of variable speeds and loads, it is an enormous challenge to achieve high-accuracy fault diagnosis (FD) of rolling bearings (RB) via existing approaches. In the article, a novel FD approach of RB, named IVTN-SA, is proposed by integrating subdomain adaptation (SA) and an improved vision transformer network (IVTN). To begin with, a local maximum mean discrepancy is introduced to replace the popular distribution alignment strategy of the same fault type in different domains based on adversarial learning mechanism and global maximum mean discrepancy. Then, the traditional vision transformer net is improved by employing a deformable convolution (DC) module to replace plain counterparts in existing CNN architectures and using a recurrent neural network to obtain the position encoding adaptively. The proposed method makes full use of the strong ability of SA in domain adaptation, the distinctive advantage of DC on feature extraction based on local information and the excellent performance of vision transformer in representing complicated relationships based on global information, thus realizing the fusion of local and global information and overcoming the distribution difference caused by working condition fluctuation. Two experimental cases have been conducted to verify its effectiveness in various working conditions, and the results demonstrate our proposed approach can achieve more excellent performance on diagnosis accuracy and model complexity compared with existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伶俐鹤轩发布了新的文献求助10
1秒前
李健的小迷弟应助CUGjy采纳,获得10
1秒前
2秒前
呼初南发布了新的文献求助10
4秒前
康佳璐发布了新的文献求助10
5秒前
5秒前
小郑顺利毕业完成签到,获得积分10
6秒前
韩明轩完成签到 ,获得积分10
6秒前
JamesPei应助呼初南采纳,获得10
9秒前
xiaowanzi完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助10
11秒前
康佳璐完成签到,获得积分10
12秒前
英姑应助1112采纳,获得10
12秒前
Knowledge发布了新的文献求助10
12秒前
13秒前
Lucas应助魔幻的寒云采纳,获得20
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
拉长的南松完成签到 ,获得积分10
15秒前
sun发布了新的文献求助10
17秒前
17秒前
科研通AI6应助李珅玥采纳,获得30
17秒前
香蕉觅云应助药膳干采纳,获得10
19秒前
南昌小霸王关注了科研通微信公众号
20秒前
wanzhao发布了新的文献求助10
20秒前
LL完成签到 ,获得积分10
23秒前
23秒前
王志杰发布了新的文献求助10
24秒前
24秒前
圆圆圆完成签到,获得积分10
26秒前
老实的从菡完成签到,获得积分10
26秒前
尔尔完成签到,获得积分20
27秒前
27秒前
ncycg发布了新的文献求助10
29秒前
wanzhao完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039