亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network

变压器 人工智能 计算机科学 人工神经网络 工程类 模式识别(心理学) 电压 电气工程
作者
Pengfei Liang,Zhuoze Yu,Bin Wang,Xuefang Xu,Jiaye Tian
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:57: 102075-102075 被引量:65
标识
DOI:10.1016/j.aei.2023.102075
摘要

Due to often working in the environment of variable speeds and loads, it is an enormous challenge to achieve high-accuracy fault diagnosis (FD) of rolling bearings (RB) via existing approaches. In the article, a novel FD approach of RB, named IVTN-SA, is proposed by integrating subdomain adaptation (SA) and an improved vision transformer network (IVTN). To begin with, a local maximum mean discrepancy is introduced to replace the popular distribution alignment strategy of the same fault type in different domains based on adversarial learning mechanism and global maximum mean discrepancy. Then, the traditional vision transformer net is improved by employing a deformable convolution (DC) module to replace plain counterparts in existing CNN architectures and using a recurrent neural network to obtain the position encoding adaptively. The proposed method makes full use of the strong ability of SA in domain adaptation, the distinctive advantage of DC on feature extraction based on local information and the excellent performance of vision transformer in representing complicated relationships based on global information, thus realizing the fusion of local and global information and overcoming the distribution difference caused by working condition fluctuation. Two experimental cases have been conducted to verify its effectiveness in various working conditions, and the results demonstrate our proposed approach can achieve more excellent performance on diagnosis accuracy and model complexity compared with existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助邓润杰采纳,获得10
刚刚
稳重白猫完成签到 ,获得积分10
1秒前
sweet完成签到 ,获得积分10
3秒前
李爱国应助邓润杰采纳,获得10
11秒前
数理化完成签到 ,获得积分10
11秒前
DBP87弹完成签到 ,获得积分10
17秒前
22秒前
科目三应助傻傻的修洁采纳,获得30
24秒前
情怀应助邓润杰采纳,获得10
32秒前
40秒前
科研通AI6应助邓润杰采纳,获得10
43秒前
FashionBoy应助傻傻的修洁采纳,获得10
45秒前
情怀应助Radiance采纳,获得10
49秒前
wangxw完成签到,获得积分10
50秒前
52秒前
科研通AI2S应助傻傻的修洁采纳,获得10
52秒前
1033524682发布了新的文献求助30
56秒前
56秒前
neao完成签到 ,获得积分10
59秒前
Lucas应助邓润杰采纳,获得10
1分钟前
Radiance发布了新的文献求助10
1分钟前
Ava应助傻傻的修洁采纳,获得10
1分钟前
Radiance完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
丘比特应助邓润杰采纳,获得10
1分钟前
1033524682完成签到,获得积分10
1分钟前
成就觅海完成签到 ,获得积分10
1分钟前
窝不想写论文完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6应助Li采纳,获得50
1分钟前
小马甲应助君寻采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
传奇3应助邓润杰采纳,获得10
1分钟前
sandy发布了新的文献求助10
1分钟前
科研通AI6应助MIMI采纳,获得10
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
在水一方应助傻傻的修洁采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573375
求助须知:如何正确求助?哪些是违规求助? 4659430
关于积分的说明 14724583
捐赠科研通 4599297
什么是DOI,文献DOI怎么找? 2524247
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737