Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network

变压器 人工智能 计算机科学 人工神经网络 工程类 模式识别(心理学) 电压 电气工程
作者
Pengfei Liang,Zhuoze Yu,Bin Wang,Xuefang Xu,Jiaye Tian
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:57: 102075-102075 被引量:65
标识
DOI:10.1016/j.aei.2023.102075
摘要

Due to often working in the environment of variable speeds and loads, it is an enormous challenge to achieve high-accuracy fault diagnosis (FD) of rolling bearings (RB) via existing approaches. In the article, a novel FD approach of RB, named IVTN-SA, is proposed by integrating subdomain adaptation (SA) and an improved vision transformer network (IVTN). To begin with, a local maximum mean discrepancy is introduced to replace the popular distribution alignment strategy of the same fault type in different domains based on adversarial learning mechanism and global maximum mean discrepancy. Then, the traditional vision transformer net is improved by employing a deformable convolution (DC) module to replace plain counterparts in existing CNN architectures and using a recurrent neural network to obtain the position encoding adaptively. The proposed method makes full use of the strong ability of SA in domain adaptation, the distinctive advantage of DC on feature extraction based on local information and the excellent performance of vision transformer in representing complicated relationships based on global information, thus realizing the fusion of local and global information and overcoming the distribution difference caused by working condition fluctuation. Two experimental cases have been conducted to verify its effectiveness in various working conditions, and the results demonstrate our proposed approach can achieve more excellent performance on diagnosis accuracy and model complexity compared with existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助Darlene采纳,获得10
1秒前
wan关闭了wan文献求助
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
黔北胡歌完成签到,获得积分10
1秒前
陆离完成签到 ,获得积分10
1秒前
漂亮白云发布了新的文献求助10
1秒前
李雅琪发布了新的文献求助10
1秒前
顾矜应助HYH采纳,获得30
2秒前
研友_Zb0a4L发布了新的文献求助30
2秒前
清秀尔竹完成签到 ,获得积分10
2秒前
遠山完成签到,获得积分10
2秒前
香蕉觅云应助何何何采纳,获得10
2秒前
HaKiZ完成签到,获得积分10
2秒前
黔北胡歌发布了新的文献求助10
3秒前
轨迹完成签到,获得积分10
3秒前
思源应助病理委托采纳,获得10
4秒前
李奚完成签到,获得积分10
4秒前
lee1992完成签到,获得积分10
5秒前
俊逸香岚发布了新的文献求助10
5秒前
ccccccp完成签到,获得积分10
5秒前
友好的乐曲完成签到,获得积分10
5秒前
我是老大应助HaKiZ采纳,获得10
5秒前
6秒前
6秒前
alex发布了新的文献求助10
6秒前
6秒前
精明的老九关注了科研通微信公众号
6秒前
哈哈哈完成签到,获得积分10
6秒前
tansl1989发布了新的文献求助10
7秒前
pufanlg完成签到,获得积分10
8秒前
wwwhan完成签到,获得积分10
9秒前
9秒前
默默问晴完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
kmkz完成签到,获得积分10
11秒前
AneyWinter66应助Cara采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494